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Abstract

Online hate speech is a large scale phenomenon of great concern in modern society.

A considerable amount of research leverages machine learning techniques to propose

automatic and accurate detection approaches. While learning directly from the data

is a major key for their success in terms of performance, methods are progressively

becoming more complex and opaque to humans.

This work combines efforts from explainable artificial intelligence and hate speech

detection. From increased social acceptance to compliance with future legislation,

we identify interpretability as fundamental for the adoption of learning methods in

real-life applications. Our focus lies on post-hoc local methods — we seek to explain

non-transparent detection methods on a single prediction-level.

We thoroughly review approaches to explain text classifiers and discuss their theo-

retical foundation. This includes popular methods like LIME, LRP, and DeepLIFT.

Based on our analysis, we encourage the usage of methods belonging to the SHAP

interpretability framework.

DeepSHAP is employed to inspect a model trained on the Davidson benchmark for

hateful and offensive language. In contrast to earlier analysis, we conclude that the

task design itself is a significant cause of the models’ limited detection capabilities.

In addition, integrating context information, in the form of social features, leads to

improved performance in detection models. Interpretability techniques empirically

demonstrate that — and also illustrate why — social features are indeed the reason

for performance gains.

We propose the usage of artificially crafted messages to examine the behaviour of

models beyond the dataset they trained on. We show the technique to be effective

in bringing to light unintended bias in specific scenarios.

Our results consistently encourage future research to set interpretability as a pri-

ority. In particular, we recommend tailoring explanations to the intended target

audience to make the most of their potential.



Abstract

Online Hassreden sind ein weit verbreitetes Phänomen, das unsere moderne Gesell-

schaft vor neue Herausforderungen stellt. In der Forschung wird maschinelles Lernen

immer öfter eingesetzt, um Hassreden automatisch und zuverlässig zu erkennen. Der

Erfolg von maschinellem Lernen basiert zu einem großen Teil auf dem direkten Ler-

nen anhand von Daten. Modelle werden dadurch jedoch auch zunehmend komplex

und undurchschaubar für menschliche Nutzer.

Diese Arbeit kombiniert Erkenntnisse aus dem Bereich der erklärbaren künstlichen

Intelligenz und der Erkennung von Hassreden. Wir identifizieren Interpretierbarkeit

als unabdingbar, um Methoden des maschinellen Lernens im echten Leben einzuset-

zen und dabei Akzeptanz in der Gesellschaft und die Erfüllung zukünftiger Gesetze

sicherzustellen. Unser Fokus liegt hier auf lokalen post-hoc Methoden — wir möchten

intransparente Klassifizierungsmethoden auf dem Level einer Vorhersage für einen

bestimmten Input erklären.

Wir besprechen bestehende Herangehensweisen zum Erklären von Textklassifizierun-

gen, auch im Hinblick auf ihre theoretische Basis. Dazu gehören u.A. LIME, LRP

und DeepLIFT. Basierend auf unserer Analyse empfehlen wir Methoden der Klasse

SHAP.

Mit Hilfe der DeepSHAP Methode analysieren wir ein Modell, das wir anhand

der Davidson Benchmark für hasserfüllte und beleidigende Sprache trainieren. Im

Gegensatz zu früheren Analysen, ziehen wir den Schluss, dass das Design der Bench-

mark ein entscheidender Grund für die eingeschränkte Genauigkeit des Modells ist.

Des Weiteren stellen wir fest, dass die Zuhilfenahme von Kontext in der Form von

Informationen über das soziale Umfeld eines Users zur Verbesserung der Genauigkeit

beiträgt. Empirisch lässt sich mithilfe von Interpretierbarkeit zeigen, dass und

warum der soziale Kontext in der Tat der Grund für die verbesserte Genauigkeit

ist.

Wir schlagen vor künstlich verfasste Textnachrichten zu benutzen, um das Ver-

halten von Modellen jenseits des Datensatzes, mit dem sie trainiert wurden, zu

analysieren. Diese Technik stellt sich als effektives Werkzeug heraus, um impliziten

Bias in spezifischen Szenarien aufzudecken.

Unsere Resultate legen nahe, dass die zukünftige Forschung Interpretierbarkeit als

Priorität festsetzen sollte. Vor allem empfehlen wir Erklärungen an ihre Adres-

saten anzupassen, um das Potenzial der erklärbaren künstlichen Intelligenz vollends

auszuschöpfen.
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1 Introduction

In modern society, more and more people are connecting via the internet. As a result,

online information and communication technologies are increasingly becoming an essential

part of everyday life. Particularly in social media, people express themselves freely with

few to no restrictions. While free speech and free expression are human rights that should

be cultivated, often these media are used as a means to spread hateful content (MacAvaney

et al., 2019).

Hate crimes have long existed. With modern technologies, however, abusive behaviour

has become an omnipresent phenomenon rather than a sporadic occurrence (Duggan,

2017). According to a 2017 survey (Duggan, 2017), two-thirds of U.S. adults entered in

contact with some form of online harassment. The effects on the targeted people can be

very harmful: from high levels of anxiety (Duggan, 2017) to depression (Munro, 2011).

Online harassment has even been linked to physical crime (Williams, Burnap, Javed, Liu,

& Ozalp, 2020).

To counteract this problem, a considerable amount of research has focused on the de-

tection of hate speech (Davidson, Warmsley, Macy, & Weber, 2017; Schmidt & Wie-

gand, 2017; Waseem, Davidson, Warmsley, & Weber, 2017) resulting in a large variety

of recognition approaches (MacAvaney et al., 2019; Mishra, Tredici, Yannakoudakis, &

Shutova, 2019a; Rizoiu, Wang, Ferraro, & Suominen, 2019). Many of them leverage the

strength of Artificial Intelligence (AI) and Machine Learning (ML) techniques to auto-

matically extract and learn features from the data itself. Despite current limitations in

accuracy, ML-based approaches can drastically reduce the amount of manual effort nec-

essary for monitoring online platforms. At the same time, recent methods have become

very complex and opaque for humans (Arrieta et al., 2020). Most famously, Deep Neural

Network (DNN) have gained popularity due to their success in practice, but behave like

black-boxes (Arrieta et al., 2020).

As ML-based technologies are increasingly adopted in human society, more and more

people are affected by their predictions. This understandably raises concern, as their

predictions cannot be determined nor explained. A new research field, called eXplainable

Artificial Intelligence (XAI), has emerged and seeks to explain the behaviour of com-

plex and opaque models. From increasing social acceptance to ensuring fairness in the

decision-making process, ML research would benefit immensely from interpretable model

predictions (Molnar, 2019).

Hate speech recognition is no exception here. There is a clear need to interpret models that

can classify content as hateful or not. This becomes even more evident if their predictions

are used to implement countermeasures against supposedly hateful users. Despite the

large amount of work done in detecting hate speech, interpretability is seldom taken into

account. This is especially true for models that address current accuracy limitations

by incorporating social network data. Current research shows a considerable increase in
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performance when integrating these features as they provide the detection model with

context (Mishra, Del Tredici, Yannakoudakis, & Shutova, 2018; Mishra et al., 2019a;

Ribeiro, Calais, Santos, Almeida, & Meira Jr, 2018). To the best of our knowledge, the

existing literature does not cover explainability for these methods at all. Hence, so far,

the effect of social features cannot be quantified, interpreted, nor understood.

In this thesis, we focus on the explainability of hate speech detection. We do so to take

a step towards detection methods suitable for real-life scenarios and applications. In this

sense, recognition approaches have to be both accurate and interpretable. Hence, we

pursue the following research objectives:

O1 Demonstrate the crucial role that interpretability can play in closing the gap between

current machine learning research and real-life applications.

O2 Identify the most relevant tools for explaining hate speech detectors without sacri-

ficing prediction performance.

O3 Explain the model’s prediction also when social network data is exploited to con-

struct more accurate models. Moreover, it should be clear how these features affect

the outcome and the behaviour of the model.

Our work is structured into three main parts. To begin with, in chapter 2, we look at

the two main fields that constitute the background of this work: XAI and hate speech

detection. Regarding the first, we review the existing literature from multiple venues and

examine interpretability concepts from different perspectives. In particular, we seek to

answer some fundamental questions regarding XAI: when is it necessary? How can we

define interpretability and other XAI related terms? How can we evaluate an explanation?

We decide to focus more on post-hoc local methods — we seek to explain non-transparent

models on a single prediction-level, as this is more in-line with our objectives. We then give

an introduction to hate speech. We discuss its prevalence in society and why recognising

it is a challenging task. Eventually, a brief review is given on existing detection strategies.

Many hate speech detectors are text classifiers based on Natural Language Processing (NLP)

approaches. Hence, in chapter 3, we take an in-depth look at applicable explainability

methods (Bach et al., 2015; Lundberg & Lee, 2017; Ribeiro, Singh, & Guestrin, 2016).

In particular, we focus on analysing the mathematical ideas and reasoning behind their

functioning. We contrast explainability methods and highlight their strengths and weak-

nesses. Finally, based on our analysis, we provide the reader with a suggestion on which

approaches to use.

Next, in chapter 4, we show the crucial role of interpretability in concrete applications.

First, we utilise explainability techniques to analyse the Davidson benchmark for hate

speech and offensive language (Davidson et al., 2017). Then, in 4.2, we observe how the

inclusion of context, in the form of social features, is beneficial for hate speech detection.

This is done in three steps. First, our experiments show a considerable leap in performance
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when social network data are integrated into a model. Then, their usefulness is empirically

proven by explainability methods that show the active role played by social features in

the prediction. Finally, on a deeper level, explainability also sheds light on how exactly

social features affect what a model has learnt.

The conclusion and final considerations of this work can be found in 5. We also evaluate

our achievements in terms of our research objectives and highlight the limitations of our

approaches.
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2 Background

In this chapter, we discuss the two main research areas that constitute the background

of this work: explainable artificial intelligence and hate speech detection. The first serves

as a set of valuable tools and methods. The second is the application area to which we

contribute. Both domains are relatively new, and their research methodologies have been

substantially influenced by the recent technological revolution and the advent of learning

algorithms.

To begin with, in 2.1, we discuss several questions regarding explainable artificial intelli-

gence from multiple perspectives: when is it necessary? How can we define interpretability

and other XAI related terms? How can we evaluate an explanation? We then seek a rigor-

ous answer to each question and include findings from different fields such as philosophy

and psychology. As a result, we put together a comprehensive scientific view of inter-

pretability.

Furthermore, in 2.2, we expose the characteristics and severity of online hate speech. We

also discuss why its detection is a challenging task and take a closer look at the work done

so far in the field.

2.1 Explainable Artificial Intelligence

From autonomous driving to text-to-speech technology, ML-based solutions are increas-

ingly being adopted in many human activities. Its usage allows the automation of a num-

ber of tasks in various domains including commerce (Oliver, 1996), law (Možina, Žabkar,

Bench-Capon, & Bratko, 2005) and medicine (Kourou, Exarchos, Exarchos, Karamouzis,

& Fotiadis, 2015). In several cases, ML techniques are able to perform nearly as good or

even better than humans (Silver et al., 2018). This, combined with the increasing avail-

ability of adequate software/hardware architectures and experts in the field, has created

the perfect environment for this technology to grow very fast.

Naturally, the increasing adoption of ML also corresponds to a growing presence in human

society. The impact is especially noticeable in cases where an ML-based system supports

decision-making processes. More and more people’s lives are affected by predictions that

are automatically generated by algorithms (Rudin & Ustun, 2018). This did not generate

strong concerns as long as the algorithms used were deterministic and therefore expressed

the intention and reasoning of the people who designed them directly. In other words,

the behaviour of deterministic algorithms can be entirely controlled by their engineers.

Therefore, their outcome incorporates and reflects the human logic of approaching a

particular task.

With the advent of ML, the behaviour of algorithms is being learnt increasingly directly

from data, and therefore, not wholly determined by their creators. This means that

predictions computed by such algorithms might not reflect the intention behind the AI

system. Thus, it is natural to wonder why a certain prediction was computed. The first
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systems based on ML were quite simple and easy to interpret, e.g. logistic regression

(Hosmer Jr, Lemeshow, & Sturdivant, 2013; Jaccard, 2001). However, in recent times

more complex architectures such as DNNs have risen to prominence and are intrinsically

black-boxes (Arrieta et al., 2020).

Due to the growing concern about the opacity of ML systems, the field of XAI has emerged

to interpret the behaviour of learning algorithms. XAI is referred to under many different

names such as Explainability, Transparency, Comprehensibility and Interpretability. These

terms, very often used interchangeably, do not carry the same meaning (Lipton, 2018).

For this reason, they will be the object of the discussion in 2.1.1.

In the following, we want to discuss the different aspects of XAI, including their related

definitions, purposes, and taxonomies. In particular, based on the existing literature, we

seek a rigorous answer to the following questions:

• Why is XAI fundamental for the future of ML in human society?

• In which cases is explainability necessary and when is it not?

• How can we define the terms related to XAI more precisely?

• What different types of explainability techniques exist? What are their character-

istics?

• What makes a good explanation? How can we assess it?

In 2.1.1, we tackle the first two questions by analysing in which cases explanations are

needed or not. We also discuss how the potential of machine learning is extremely limited

if it is not supported by interpretability. In 2.1.2, we look at XAI’s related terms. We

try to construct rigorous definitions and provide a detailed taxonomy of methods based

on these notions. Finally, in 2.1.3, we analyse what makes explanations good and how to

evaluate them. For this part, we take the opportunity to include complementary results

from other research fields, such as psychology and philosophy. These different venues have

collected in the years a considerable amount of valuable work that is too often not taken

into consideration.

2.1.1 Why and When is Explainable Artificial Intelligence Important?

In a prediction task, often a trade-off has to be made: are we more interested in what is

predicted or why it is predicted? In some cases, only the first is important and therefore

sufficient. However, in other cases also the second can be fundamental rather than just

helpful. The necessity of addressing the why component of a prediction becomes more

evident as soon as the task presents some particular traits, for example:

• The prediction affects a situation that involves some forms of risk, e.g. a medical

decision.
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• The field, the task, or the type of prediction are not yet profoundly understood, e.g.

stock market forecast.

On the other hand, in a situation with no evident risk involved or in a well-studied context,

predictions are usually accepted even without an explanation, e.g. a movie or shopping

item recommendation.

At the same time, leaving out the why of a prediction goes against the nature of human

curiosity and the classic goal of science: understanding. This occurs if problems are solved

simply by using data sets and black-box algorithms. Interpretability, on the contrary, has

the potential to transform models into a source of knowledge that can advance scientific

research. When humans learn, they seek to understand the reasons behind certain events

rather than passively recording what happens around them. When a person feels sick,

they will wonder why. Making sense and finding meaning in what is happening lets

us adapt our behaviour to the surrounding environment. If a person is sick every time

they drink milk, then that person might change their behaviour towards milk. In this

sense, when we compare ML predictions to the human perception of knowledge, having a

predicted outcome without an interpretation solves the challenge only partially (Molnar,

2019).

Humans value explanations since an explainable decision-making process is more sim-

ilar to their way of thinking. Therefore interpretability represents a fundamental tool

for the integration of machines and algorithms into our daily lives and for their social

acceptance (Molnar, 2019). Interestingly, a famous experiment has shown how humans

attribute personal traits to the objects they interact with (Heider & Simmel, 1944). In

case the personified entity is an ML decision-maker, the system is more likely to be socially

acceptable if it gives reasons for its actions.

Social acceptance of decisions strongly relies also on trust, which can be negatively affected

when the entity in charge of decision exhibits a bias. ML algorithms have shown to pick

up biases from the data used for training (Dixon, Li, Sorensen, Thain, & Vasserman,

2018). Hence, they might operate in a discriminatory way against some groups of people

(Bolukbasi, Chang, Zou, Saligrama, & Kalai, 2016). Interpreting models can expose this

type of behaviour and serves as a bias detection tool to debug models and data sets. Thus,

interpretability is a valuable tool both in the development phase and after deployment.

In the former, for debugging, and in the latter to support its decisions with reasons while

being operative.

The necessity of interpretability for the broader adoption of ML is not only about social

acceptance and similarity to the human and scientific perspective of knowledge. So far,

no law restricts the usage of ML-based technologies, but this is likely to change in the

future. Some already claim that the European Union 2016 General Data Protection

Regulation (GDPR) (Regulation, 2016) will not just have a significant impact on the

usage of personal data. They also argue that it will also affect the applicability of ML

algorithms by imposing a “right to explanation” (Goodman & Flaxman, 2017). Such right
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would give the ability to users to ask for an explanation regarding an algorithmic decision

that was made about them.

It is not yet perfectly clear whether this “right to explanation” does already exist and

how AI systems should adapt to comply with it (Edwards & Veale, 2017; Wachter, Mit-

telstadt, & Russell, 2017a; Wachter, Mittelstadt, & Floridi, 2017b). Nonetheless, users’

rights and restrictions on non-interpretable algorithmic decisions will be at the centre of

future discussion and are likely to appear soon. This is motivated by an urgent need

for trustworthiness and transparency of AI systems, especially to make sure they do not

operate in a discriminatory way.

In essence: why can we not trust ML algorithms even when they perform well? The

problem relies on the fact that performance metrics, such as F1 scores, are an incom-

plete description of most real-world tasks (Doshi-Velez & Kim, 2017; Molnar, 2019).

Interpretability provides us with the tools to increase social acceptance and adoption of

ML-based systems. At the same time, it can also enable the usage of models as a valu-

able source of knowledge. Some works (Ray, Yao, Kumar, Divakaran, & Burachas, 2019;

Selvaraju et al., 2019; Strout, Zhang, & Mooney, 2019) already show significant benefits,

including improved performance, when using a collaboration between ML models and

human supervisors that exchange explanations during the learning process.

2.1.2 Defining Explainable Artificial Intelligence

The field of XAI is, at the same time, new and highly unstructured. Many different terms

are used interchangeably as synonyms of interpretability. However, although they refer to

similar concepts, they may carry a different meaning. This suggests that interpretability

is quite far from being a monolithic concept (Lipton, 2018). Instead, it represents a variety

of ideas and its intuitive meaning depends on the context. Figure 1 shows how different

terms, although nowadays used very often as synonyms, have a different trend in time.

Ergo, suggesting a difference in their conceptual purpose.

With no technical or formal definition for interpretability, some works try to define it

simply as a requirement to trust a model (Kim, Rudin, & Shah, 2014). Yet, also the

concept of trust is not a technically defined notion (Lipton, 2018). In practice, accuracy

is often used as a trust measure for a model. This implies that only how often the

model is wrong is valued. On the other hand, where it is wrong is neglected. Also

trusting only models that make mistakes in regions where also humans do is not enough

as a requirement. Although in this case it seems intuitive that models can perform and

generalise like humans, their generalisation capacity is limited to the test set. In fact, they

lack fundamental properties like transferability and robustness. This is consistently shown

in the literature by challenges such as adversarial examples (Liang et al., 2018; Szegedy

et al., 2014; Yuan, He, Zhu, & Li, 2019) and domain adaptation (Ganin & Lempitsky,

2015; Glorot, Bordes, & Bengio, 2011).
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Figure 1: Total publications in recent years whose title, abstract, or keywords refer to the

field of XAI. While the research on interpretable AI systems has been growing steadily

over time, the term explainable AI became trendy only in recent years. A possible reason

for this is the recent success of complex black-box models. Picture originally included in

Arrieta et al. (2020, Figure 1).

A more viable approach is to look at the concept of interpretability as too broad to be

technically defined. As an alternative, we can identify more specific sub-categories that

can be described in detail. In fact, works like Murdoch, Singh, Kumbier, Abbasi-Asl,

and Yu (2019) and Lipton (2018) distinguish between two kinds of systems: transparent

models and post-hoc explainability. The first comprehends models that are intrinsically in-

terpretable by design. The latter indicates ones that are explained by means of additional

techniques. In this case, model transparency is the opposite of opacity and blackbox-ness.

It indicates the presence of some sort of knowledge of how the model works. The level to

which we understand the inner workings of the models determines a further classification

breakdown:

• Simulability, strictly speaking, means that a person should be able to contemplate

or even to simulate the entire model at once (Arrieta et al., 2020; Lipton, 2018).

Only elementary models (Tibshirani, 1996) belong to this category.

• Decomposability stands for the property that each part of the model admits an

intuitive explanation. In other words, all the components of the model fall in the

previous category when considered in isolation (Arrieta et al., 2020; Lipton, 2018).
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Figure 2: Information’s flow when the model is transparent. The user can interpret the

model directly and explain it.

• Algorithmic Transparency relates to the learning process of a model. Models in this

category follow an understandable training process to produce a rule that connects

input and output (Arrieta et al., 2020; Lipton, 2018). For example, linear models

have a closed-form solution to their optimisation problem. Therefore, they are

algorithmically transparent, while DNNs are not.

Although modern complex black-box algorithms do not belong to any of these categories,

it is interesting to notice that neither humans do (Lipton, 2018). Figure 2 shows the

information flow in a setting that uses a transparent model.

Post-hoc explainability, instead, is not a property of the model itself. It instead describes

a setting in which an external method, often referred to as explanation method, targets

the non-transparent model and extracts information. This information is then used to

provide the user with valuable knowledge. Post-hoc methods do not describe the exact

inner workings of a model. Instead, they usually confer useful additional information

that is presented together with the model’s prediction and enhances its interpretability.

One of the main advantages of this concept is that it can be applied after-the-fact with-

out sacrificing prediction performance (Lipton, 2018). Figure 3 graphically illustrates a

conceptual flowchart of a system using a post-hoc explainability setting.

If we assume that humans are to some extent interpretable, their interpretability is of

post-hoc type (Lipton, 2018). When a person makes a decision, they behave like a black-

box model. In this sense, nobody can precisely know how the decision is being conceived

in their mind. At the same time, the person can then explain their decision by providing

some reasons.

The literature (Arrieta et al., 2020; Guidotti et al., 2019; Murdoch et al., 2019) categorises

post-hoc approaches under different aspects, based on the type of models they can target,



10 2 BACKGROUND

Input 

User

Black-Box
Model 

Prediction 

Ground
Truth 

Post-Hoc
Method 

Evaluation
Metric

Figure 3: Information flow when the model is a black-box and hinders the user from

interpreting it. An external explainability technique is used to find reasons for the model’s

prediction.

their focus, and the form in which explanations are provided:

• Model-specific or model-agnostic: methods belonging to the first category can only

be applied to a specific class of methods, e.g. to decision trees or to a DNN. They

usually make assumptions on the structure of the model to be interpreted and

use particular properties derived from it. Model-agnostic approaches, instead, can

provide explanations for any model without making any assumption on its structure.

Usually, these approaches only need to perform several runs of the target model

without needing access to its structure and parameters (Arrieta et al., 2020; Guidotti

et al., 2019).

• Local or Global: the two categories refer to prediction-level and dataset-level expla-

nations respectively. Approaches belonging to the first focus on providing reasons

for a specific prediction, e.g. which input features contributed to the model’s deci-

sion. Global methods instead focus on describing the overall model’s behaviour and

what it has learnt, e.g. in terms of relationships and patterns within the dataset

(Arrieta et al., 2020; Guidotti et al., 2019).

• Explanation Form: it describes how the explanation is delivered to the user, for

example as text or visualisation. Each of them comes with its own advantages and

disadvantages. They can also be combined. Usually, the choice is almost exclusively

dependent on the context and users’ preferences (Arrieta et al., 2020; Murdoch et

al., 2019).

This categorisation can be expressed as a taxonomy, summarised in figure 4, useful to
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better understand XAI related terms. This is done in Arrieta et al. (2020), where the

following definitions are provided.

Definition 1 (Interpretability). ”It is defined as the ability to explain or to provide the

meaning in understandable terms to a human” (Arrieta et al., 2020, Page 5).

Definition 2 (Explainability). ”Explainability is associated with the notion of explanation

as an interface between humans and a decision maker that is, at the same time, both an

accurate proxy of the decision maker and comprehensible to humans” (Arrieta et al., 2020,

Page 5).

Definition 3 (Transparency). ”A model is considered to be transparent if by itself it is

understandable. Since a model can feature different degrees of understandability, trans-

parent models [...] are divided into three categories: simulatable models, decomposable

models and algorithmically transparent models” (Arrieta et al., 2020, Page 5).

Although there are certainly many formulations that could be used as definitions of XAI

related terms, these terms should not be used interchangeably. Instead, future research

should consider their actual meaning and how they relate to a more rigorous taxonomy.

For example, while the term interpretability appears to be more general, the concepts of

transparency and explainability are closer to what we introduced as model transparency

and post-hoc explainabilty respectively. In general, we also suggest to use a larger variety

of terms and integrate more technical notions that belong to a rigorous taxonomy.

In the upcoming sections of this work, 3 and 4, we discuss and work with XAI techniques

applied to the field of hate speech recognition. Our focus will be on local post-hoc explain-

ability methods, as we now argue that they are more suitable for our intended application

usage.

• Why post-hoc approaches? Although some works argue in favour of transparent

models (Rudin, 2019), we shall not forget that they are usually tailored to a certain

task. Therefore, each field of application and use-case will have different design

requirements for interpretable models. Moreover, not knowing all the inner mecha-

nisms of a model and instead providing some reasons for a certain prediction carries

more similarities to the human explanation process (Lipton, 2018). Finally, post-

hoc approaches do not have a strong impact on the target model’s design. This does

not discourage the usage of more complex models that potentially perform much

better. In 3.2, we also show how the interpretation of transparent models can be

seen as a special case of a post-hoc process.
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Figure 4: Taxonomy of XAI approaches and terms.

• Why local methods? Global methods can indeed gather more information about

the whole model they target and eventually even lead to a deeper understanding of

it. This type of knowledge is perhaps more useful for domain experts and researchers

rather than end-users interfacing with the AI system. Local methods, on the other

hand, seek to provide reasons for a single prediction level while leaving out more

global connections and relationships that the target model has learnt. We argue

that the latter, although perhaps less research-oriented, is more useful for real-

world applications also once the model is deployed. For instance, a local method

appears quite tailored to support an AI system that has to explain a decision on a

user that has requested it, i.e. complying with the “right to explanation” (Goodman

& Flaxman, 2017).

When it comes to the target model and form of explanations, we do not exclude any

category a priori. In the upcoming chapters, we present both model-agnostic and model-

specific approaches. Also, several forms of explanations will appear, e.g. a combination

of visual artefacts, text, and feature relevance scores.

2.1.3 Good Explanations: Characteristics and Evaluation

So far, we discussed why and in which cases XAI can significantly favour the adoption

of fairer ML-based technologies. At the same time, we also built definitions for XAI
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related concepts through a more rigorous approach. Yet, it remains to be clarified what

explanations are and what they should look like in order to be helpful and human-friendly.

Notoriously, XAI research has been dominated by those technical fields that also con-

tribute to developing ML technologies, e.g. Computer and Information Science. Miller

(2019) observes that most of the existing literature in XAI only relies on the researchers’

intuition of what a “good explanation” is and are unaware of more rigorous findings coming

from other fields. To overcome this, the author suggests that XAI should take advantage

of the vast and relevant work that has been done in other fields such as philosophy, psy-

chology, and cognitive science. In fact, there is a considerable amount of valuable research

on how people define, present, and perceive explanations. Miller (2019) exhibits major

findings from more than 250 publications in the social sciences. In the following, we list

some of these findings that we believe should be considered more in XAI research when

it comes to building human-friendly explanations.

• Explanations are contrastive (Lipton, 1990), i.e. they should expose the difference

between two opposing scenarios: the current one and a hypothetical situation in

which the predicted event would not have occurred. In other words, as also shown

in example 1, people do not ask why a certain event happened, but rather why it

happened instead of another one.

• Explanations are selected. Full and scientific explanations are usually less desired

than short ones that contain only a handful of reasons (Mittelstadt, Russell, &

Wachter, 2019). When presented with a long list of factors that influence a certain

prediction, humans tend to select one or two and ignore the others. This simplifi-

cation process follows our personal beliefs and is therefore affected by our cognitive

bias (Miller, 2019).

• Explanations are social, i.e. they represent a specific case of transfer knowledge be-

tween two individuals within a social context (Miller, 2019). Therefore, in addition

to the user’s bias, explanations are also affected by the context in which they occur.

Example 1. A person’s loan is rejected based on a model that took into consideration

some personal features. We expect that the person is not interested in the entire list of

reasons. Preferably, this person wants to know which factors they would need to change

for their loan to be accepted. At the same time, if a list of reasons for the rejection is

shown to the person, they might ignore part of it. Namely, they might only focus on a few

items depending on their cognitive bias and the current social context. For example. they

could select 1-2 reasons that they find unfair.

In general, the desirable explanation properties of an AI system (trust, causality, fair-

ness, privacy awareness (Arrieta et al., 2020)) are highly dependent on the interacting

entities and the social context. Hence, they are hard to define a priori. However, once
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these requirements and goals are defined for a specific task, how can one evaluate the

effectiveness of an explanation?

When considering an ML algorithm, assessing the performance can be done through

several metrics on the test set. Common examples are accuracy, precision and F1 score.

Although the discussion on which metric is the best is still open, different metrics share

the ability to measure the performance with a numerical score. This allows objective

comparisons between task methods and the creation of a benchmark for each task. For

hate speech detections, popular examples are Waseem (2016) and Founta et al. (2018).

Unfortunately, for interpretability, there are no obvious performance metrics that quan-

tify with a numerical score how good an explanation is. This restricts the options for

objective comparison and may limit the choice of a certain framework to be based only

on subjective preferences. To address this, recent works build more complex alternative

ways, called explanation evaluation paradigms, which can attribute performance scores

also to explanation methods (Mohseni & Ragan, 2018; Poerner, Schütze, & Roth, 2018).

These new paradigms contributed to the foundation of a new field: explanation evaluation

(Doshi-Velez & Kim, 2017).

For ML algorithms, evaluation metrics and methods can be found in organised taxonomies

(Japkowicz & Shah, 2011). Every evaluation procedure should quantify the contribution

of the framework that it evaluates. In the same spirit, Doshi-Velez and Kim (2017) builds

an analogous taxonomy of evaluation approaches for interpretability, also summarised in

figure 5:

• Application-grounded (real humans, real tasks): it is the direct application and

evaluation of the method in its intended task. This often involves domain experts

in concrete scenarios, e.g. doctors using an ML framework as a decision support

tool (Herron, 2004). This type of approach is very well aligned with the goals of

explainability, i.e. with verifying that the ML framework delivers w.r.t its intended

purpose (Doshi-Velez & Kim, 2017).

• Human-grounded (real humans, simplified tasks): instead of applying the method

directly to the target application, simpler human-subject experiments with the

same character and goals are conducted (Doshi-Velez & Kim, 2017). One exam-

ple is Mohseni and Ragan (2018), where humans ranked explanations for text and

image classifiers. Naturally, evaluations of this kind cannot be as specific as the

application-grounded ones. However, they permit to relax many of the constraints

(availability of domain experts, costs, time) that reduce the direct applicability in a

real and concrete scenario. On the other hand, preserving the end-goal when shift-

ing to a more general and abstract experiment design can indeed be a challenge.

Nevertheless, in some cases, it provides flexibility w.r.t some design factors such as

task complexity (Kim, Chacha, & Shah, 2015).
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Figure 5: Three types of explanation evaluation techniques compared on different metrics.

On the x-axis, the human resources necessary to implement the experiments. On the y-

axis, the specificity of the task used for the evaluation.

• Functionally-grounded (no humans, proxy tasks): by using some formal definition

of interpretability, these approaches build a proxy task that can assess explana-

tion quality without involving human subjects at all. For instance, in Arras, Horn,

Montavon, Müller, and Samek (2016), a proxy task is designed for evaluating ex-

planations for NLP algorithms by altering the input documents (concretely deleting

and inserting words). On the one hand, the absence of the need for a pool of human

subjects removes all the related costs and makes functionally-grounded approaches

extremely scalable. On the other hand, formally defining interpretability and ex-

planation quality for a certain task can be very hard. Moreover, designing a proxy

task that reflects these notions is a major challenge and often a limitation to these

techniques (Doshi-Velez & Kim, 2017).

Evidently, the different types of evaluation paradigms differ substantially and imply com-

pletely different design processes for their experiment, some of which can be costly. There-

fore, it is crucial to understand beforehand which setting applies more to a particular

domain. So, how can we choose which one is more suitable?

Of course, as with most of the other questions in this thesis, there are no yes or no

answers. Nonetheless, observing factors and limitations provides a good indication of

what type of evaluation is more suitable or rather feasible. Some examples are time

constraints, availability of experts or a human subjects pool, financial costs, task generality,

and opportunities for proxies/simplifications (Doshi-Velez & Kim, 2017).

Application-grounded evaluations test if a certain AI system is in line with its intended

purpose. However, they often require the design of very high-quality experimental settings



16 2 BACKGROUND

that can be very costly w.r.t. several resources: financial, human, time. Hence, although

performance concerning real objectives certainly gives strong evidence of success (Doshi-

Velez & Kim, 2017), cost factors play a huge role and cannot be underestimated.

Human-grounded evaluations enable the researcher to design experiments that can be

carried out with humans with no particular expertise in the domain of application. This

allows for both a bigger subject pool and fewer expenses since there are most likely

no highly-trained domain experts to be compensated. Human-grounded evaluation is

most appropriate when testing more general notions regarding the quality of explanations

(Doshi-Velez & Kim, 2017).

Functionally-grounded evaluations are, with no doubts, the most inexpensive and scalable

option. They are also appropriate or rather the only possible path when an experiment

cannot involve human subjects because this would be dangerous or unethical. But at the

same time, proxy tasks can reflect the real application’s goal inaccurately.

To sum up, in the presence of strict cost constraints and needs for scalability, functionally-

grounded approaches outperform the two alternatives and are usually preferred if viable.

Nevertheless, the type of evaluation must match the claim being made by the research

(Doshi-Velez & Kim, 2017). Hence, in some cases, involving humans in the process is not

only costly and helpful, but also necessary. As we will see in the following section, hate

speech detection is hard due to the different perceptions that people have of hate. Hence,

when evaluating explanation algorithms in this application field, involving humans seems

a more appropriate choice in most cases.

2.2 Hate Speech Detection

In recent times, with the advent of social media networks and other types of online plat-

forms that incorporate user-generated content, online communities have witnessed an

increasing phenomenon of abusive and hateful behaviour between their members. The

effects can be devastating for the people targeted: high levels of anxiety and stress (Dug-

gan, 2017) and, in some cases, depression (Munro, 2011). Williams et al. (2020) also links

online harassment to physical crime.

A closer look at the statistics shows a concerning situation. It demonstrates that online

hostile behaviour is more than a sporadic occurrence. In fact, 66% of U.S. adults have

witnessed some form of harassment online (Duggan, 2017). Given the prevalence of the

phenomenon, there is no doubt that manual controls and prevention is by no means an

effective solution.

The urgent need for automated and scalable methods for tackling online abuse motivated

intensive research in the field. Numerous works such as Cho et al. (2014), Djuric et al.

(2015) and Mishra et al. (2018) have contributed to the existing literature giving birth to

continuously evolving research in hate speech detection.

In 2.2.1, we discuss general aspects of hate speech, including notions and intuitions on
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why its detection is an arduous task. In 2.2.2, we review the main strategies that can be

found in the existing literature for recognising hate speech. Furthermore, we organise the

methods in a time-line and emphasise the milestones in the research.

2.2.1 General Aspects and Challenges

Several terms can be found in the existing research to indicate hate speech content:

abusive, hateful, flames, harassment, toxic. Although some of them differ slightly in

meaning, we do not discuss these differences as done in 2.1.2 for interpretability. We choose

to do so since, unlike different notions within XAI, the difference between hate speech

related terms does not correspond to any difference in the recognition task goal. Thus, in

this work, we use these terms interchangeably. We refer to hate speech (and its synonyms)

as any communication that denigrates a single person or a group of people based on some

characteristics, e.g. gender, sexual orientation, nationality, religion (Schmidt & Wiegand,

2017).

A survey conducted by the Pew Research Center on 4,248 U.S. adults reveals the scale

at which online hate speech occurs (Duggan, 2017). According to their results, 41% of

Americans have personally experienced harassment. 18% has even been subjected to some

severe form of it. If we also include people who witnessed online abuse without being the

direct target, we observe that about two-in-three adults (66%) have experienced some

form of hate speech. For completeness, we report the results from Duggan (2017) about

harassment severity and pretext in the figures 6a and 6b. One can observe how the pretext

and severity of abusive conduct vary considerably.

Despite the evidence for the large extension and effects of hate speech, it is often hard

to agree on what content constitutes hate speech. Each community has diverse norms to

establish what is abusive and what is not and may have a different perspective on the

gravity of online harassment. For instance, 7 shows how different groups of people, in this

case separated by gender, have a divergent perspective on hate speech online (Duggan,

2017).

Can we distinguish different forms of hate? Waseem et al. (2017) classifies hate based on

explicitness :

• Explicit: usually straightforward to recognise, it uses offensive terms such as insults

or threats (Waseem et al., 2017).

• Implicit: it comes in a more subtle form. In most cases does not contain explicit

terms (Waseem et al., 2017). Instead, hate appears behind ambiguous terms and

figures of speech such as metaphor and sarcasm (Mishra, Yannakoudakis, & Shutova,

2019b)
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(a) Severity of Harassment (b) Pretext for the Harassment

Figure 6: Pictures originally in Duggan (2017, Page 3, Page 17). Statistical results on

severity (a) and pretext (b) of online harassment.

and on directness :

• Directed: abuse targets a specific individual and points at personal information and

traits of the target (Waseem et al., 2017).

• Generalised: it abstracts from individuals and instead targets a larger group of peo-

ple. Usually, the target group has a particular trait in common among its members,

e.g. gender, ethnicity, or political orientation (Waseem et al., 2017).

Sometimes, generalised forms of hate speech have a specific name. For example, the term

sexism is used to describe hate speech towards women and racism usually indicates abuse

towards people with a non-western ethnicity.
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Figure 7: The perception of hate differs between two groups, e.g. genders. Figure origi-

nally in Duggan (2017, Page 7).

Needless to say, this categorisation already exposes the complexity and intricacy of captur-

ing hate speech. When one attempts to recognise it, categories like explicit and directed

are easier to detect. In contrast, implicit and generalised hate is far more challenging to

identify (Waseem et al., 2017). The existing literature also shows how, depending on the

type of hate, even the labelling process carries a substantial disagreement between hu-

man annotators. Dadvar, Trieschnigg, Ordelman, and de Jong (2013) reports a very high

agreement on cyber-bullying content (direct and explicit). In contrast, Waseem (2016)

reports a significant disagreement, especially when it comes to sexism (generalised and

often implicit). Simply put, in the presence of a more subtle expression of hate, annota-

tors tend to not agree with each other. As a consequence, the labelling process becomes

complicated.

Even with an excellent automatic solution to detect abusive behaviour that enables online

platforms to counteract it, there are still challenges to be considered. As argued in 2.1.1,

the future will most likely see emerging laws that support and protect end-users that

have been affected by an algorithmic decision, i.e. the “right to explanation”. Hate

speech detection, where an algorithm is employed by a social media platform like Twitter,

will need to be interpretable if used. As soon as the platform applies a countermeasure

against the supposedly hateful user (e.g. content deletion, account block), the service

should be able to provide the affected user with an explanation of why their content was



20 2 BACKGROUND

judged abusive. Therefore, hate speech recognition surely requires interpretability to be

successfully applied in practice.

Besides potential law enforcement, the ability to explain a hate speech classifier also

serves the purpose of assessing or rather confirming the correct functioning of the detection

algorithm in use. We cannot exclude that the supposedly hateful user is, in reality, a victim

of the model’s bias. Within this respect, it is important to distinguish unintended bias

(Dixon et al., 2018) from the more general concept of bias/fairness (Feldman, Friedler,

Moeller, Scheidegger, & Venkatasubramanian, 2015). Bias, in general, is necessary for

the model to recognise hate and to make decisions. Unintended bias, on the other hand,

indicates a different behaviour of the model against some groups of people and should be

avoided (Dixon et al., 2018). This problem is studied in-depth in Dixon et al. (2018), where

solutions are proposed for future research. Concretely, the authors discuss a definition of

unintended bias specifically for hate speech detection and present strategies for quantifying

it and mitigating it in datasets and models.

2.2.2 Evolution of Detection Strategies

When we look at hate speech detection models, a transition of the State Of The Art (SOTA)

has taken place in recent years. We went from methods that use manual feature extrac-

tion and hand-crafted rules (Spertus, 1997) to approaches that involve more automated

feature extraction processes such as DNNs (Badjatiya, Gupta, Gupta, & Varma, 2017).

Recent times have also witnessed the introduction of methods that do not rely solely on

text input and instead use additional features such as user and network data (Mishra

et al., 2018). In the following, we discuss some of the main contributions to hate speech

detection, which in figure 8 are also shown compactly in a timeline.

The first documented detection approach for hateful messages dates back to 1997 (Sper-

tus, 1997). The proposed method extracts features manually from the raw data using a

rule-based heuristic approach. The extracted features are then fed into a Decision-Tree

classifier that outputs whether the message is hostile or not. While the approach already

reaches a high accuracy on non-abusive messages and reaches a recall of 98%, it performs

poorly on the abusive ones, where it only achieves a 64% recall score. The performance

leap is caused by the difference between the amount of hateful tweets, referred to as

flame, and non-hateful ones, referred to as okay. Spertus (1997) also notes some specific

limitations of their method, such as sarcasm, mistakes, innuendo. They consider these

limitations as intrinsic of the task and not caused by the current NLP recognition technol-

ogy. In particular, even human readers sometimes cannot recognise sarcastic expressions

with confidence.

The usage of lexicon-based features appears only 13 years later in Razavi, Inkpen, Urit-

sky, and Matwin (2010). The proposed method extracts features at different conceptual

levels by building a dictionary of words and phrases in which every entry is weighted with
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Figure 8: Milestones in the field of hate speech detection in chronological order. Recent

times, in particular from 2012 onwards, have seen a substantial increment in the number

of recognition approaches. For reference, Facebook and Twitter were launched in 2004

and 2006 respectively.

an abusive score. Every level is then fed to an independent Naive Bayes classifier (Com-

plement (Witten & Frank, 2002) for the first level, Multinomial Updatable (Witten &

Frank, 2002) for the second and Decision Tree/Naive Bayes hybrid (Hall & Frank, 2008)

for the last). Similar approaches, such as Gitari, Zuping, Damien, and Long (2015), also

emerged in the following years and kept improving in terms of performance. Neverthe-

less, the direct usage of a lexicon tends to work well only when the type of abuse/hate is

explicit and expressed through specific words (Mishra et al., 2019b).

For any text classification task, it is quite a popular choice to use Bag of Words (BoW)

for representing text. In fact, from 2012, this representation appears very often in hate

speech models (Chen, Zhou, Zhu, & Xu, 2012; Sood, Antin, & Churchill, 2012; Warner &

Hirschberg, 2012; Xu, Jun, Zhu, & Bellmore, 2012). While using BoW features usually

yields a good classification performance, the effectiveness of this representation highly

depends on whether predictive words appear both in training and test set. Moreover,

data features represented as BoW may face a data sparsity problem due to the restricted

length of text inputs for hate speech detection tasks (Schmidt & Wiegand, 2017).

More recently, with the large adoption of DNN algorithms, a technique called word em-

bedding (Mikolov, Chen, Corrado, & Dean, 2013), has been proposed as an improved

representation for words and phrases. For each word (or sentence, e.g. paragraph embed-

ding (Le & Mikolov, 2014)) a numerical vector representation is computed by a DNN.

This representation has the advantage that different words with similar semantics may

also end up having similar embedded vectors. Djuric et al. (2015) were the first to adopt a
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technique of this type for abusive language recognition. In their case, a paragraph embed-

ding was used to compute intermediate features which were then classified by a logistic

regressor, outperforming previous BoW-based methods. As expected, in the following

years, approaches based on neural models became strong contenders as SOTA methods

(Badjatiya et al., 2017).

Other works, starting with Dadvar et al. (2013), took a different path and considered

including social features and personal traits alongside text. Some examples are the user’s

gender (Waseem, 2016), or the geo-location and the profile’s language (Galán-Garćıa,

Puerta, Gómez, Santos, & Bringas, 2016). In recent literature, one can find works that

also take into account social communities and treat them as graph input to enhance

prediction performance. For instance, Mishra et al. (2018) and Mishra et al. (2019a)

create a community graph that encodes the social environment of users. This graph

is then either embedded as a matrix or fed directly to a novel DNN technique: Graph

Convolutional Neural Networks (Hamilton, Ying, & Leskovec, 2017).

Although a considerable amount of work has been done in the realm of hate speech

detection, the same cannot be said about interpretability for hate speech detection. For

now, only a few contributions to the literature discuss interpretable solutions to hate

speech recognition as more than a side note.

For instance, MacAvaney et al. (2019) proposes a transparent method for hate speech de-

tection that uses a combination of simple classifiers. Concretely, their multi-view Support

Vector Machine model combines several linear support vector machine classifiers. The

model achieves nearly SOTA performance and, at the same time, can be directly inter-

preted. In fact, one can check which one of the different individual classifiers contributes

the most to the model’s prediction. Rizoiu et al. (2019), instead, builds a 2-dimensional

representation of tweets from the model’s latent space called the map of hate. The map

is used to understand the effect of transfer learning on a model. However, the technique

is then not used to explain any prediction.

The small amount of available interpretable tools for hate speech detection motivates

our work. In particular, in 4, we also discuss how interpretability can be combined with

techniques that include social features.
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3 Local Explainability for Text Hate Speech Classi-

fiers: a Mathematical Analysis

In this chapter, we explore methods for local explanations that are applicable to NLP or,

more specifically, to hate speech detection models.

Our aim is not only to gain insights into the theoretical aspects and implications of existing

methods. We also seek an answer to the question of which explanation approaches are

more relevant for the hate speech detection use-case. As we will see, some modifications of

the methods will be necessary to adapt them to different possible representations for text

data. Two new concepts, local interpretable representation and localised linear model, are

introduced to facilitate such adaptation and to exhibit some interesting properties that

further clarify the existing work in the field.

The approaches that we consider come from several sources and therefore present a sub-

stantially different notation. Hence, it becomes harder to compare existing methods and,

as a consequence, prefer one over the others. For this reason, we analyse existing methods

with a common and consistent notation that we define a priori. Also, through specific

examples, we examine how they relate to our use-case context.

To begin with, we summarise the main symbols that build up our consistent notation.

In 3.1, we introduce the basic notions and definitions that characterise our analysis set-

ting. In 3.2, we look at the simplest possible case: the model to be explained is already

interpretable. To start with explanation methods, in 3.3, we describe input perturbation

methods (Kádár, Chrupa la, & Alishahi, 2017; Li, Monroe, & Jurafsky, 2016). These

procedures systematically analyse the response of a model to a specific alteration of the

input. Then, in 3.4, we describe backpropagation methods. Such approaches explain a

model’s prediction by propagating a quantity called relevance from the output back to

the input. Some of them, called gradient methods (Denil, Demiraj, & De Freitas, 2014;

Simonyan, Vedaldi, & Zisserman, 2014; Sundararajan, Taly, & Yan, 2017), achieve this

by computing partial derivatives. Others, like LRP (Bach et al., 2015) and DeepLIFT

(Shrikumar, Greenside, & Kundaje, 2017), are more specific for explaining neural net-

works and define a set of rules that take advantage of their layer structure. Afterwards,

we explore how complex models can be approximated globally or locally with simpler ones

in 3.5. We also argue in favour of local approaches and present a popular method: LIME

(Ribeiro et al., 2016).

Considering the high number and variety of explanation methods, in 3.6, we present a

unified view of existing approaches that goes under the name SHAP (Lundberg & Lee,

2017). This new perspective notably simplifies the space of existing approaches. There-

fore, it provides us with a tool to support our recommendation to the reader. Moreover,

it supports the existence of a general theory for explanation methods. Finally, in 3.7, we

draw our conclusion on which approaches to prefer.

Figure 9 summarises conceptually the methods that we will explore in the chapter.
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Figure 9: Conceptual map of the explanation methods considered in this chapter. In

yellow, methods that will be proven to be equivalent in 3.6. Methods that are built for

very specific architectures or activation functions, e.g Grad-CAM (Selvaraju et al., 2017),

Deconvolutional Network (Zeiler & Fergus, 2014), Guided Backpropagation (Springen-

berg, Dosovitskiy, Brox, & Riedmiller, 2015), and Cell Decomposition for Gated RNNs

(Murdoch & Szlam, 2017), are out of the scope of this analysis.
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Used Symbols

Here are listed all the main symbols that will be defined and used in the chapter. A very

brief description accompanies every symbol. A more complete definition is given the first

time that the symbol in question appears in the chapter.

x Input sentence.

x′ Binary interpretable data representation of x

|x| Length of the sentence x.

X Space of input sentences.

t Position in a sentence.

xt Word in position t in sentence x.

V Vocabulary, i.e. set of available words.

c Speech class.

C Set of speech classes in the classification task.

c∗ Predicted class.

f Task method, text classifier.

F Space of classifier functions.

g Interpretable classifier.

G Space of interpretable classifiers.

φname Explanation method, accompanied by the method’s name

φ(t, c, x) Relevance score w.r.t. class c of word xt.

z (or z′) Fake data sample obtained by perturbing x (or x′)

φt Shapley value of word/feature xt.

l Layer in neural network task method.

u Unit in a layer of a neural network.

au Activation of unit u.

wuv Weight between the units u and v.

σ Activation function, e.g. sigmoid.

R
(l)
u Relevance for unit u in layer l.
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3.1 General Definitions

Let us look at a sentence x as an ordered sequence of words (or more in general an ordered

sequence of tokens) xt, that is:

x =
[
x1, x2, · · · xn

]
.

We say that xt is in position t within x and, if we let |x| denote the length of x, then we

have that 1 ≤ t ≤ |x|. X will indicate the space of all sentences and V the vocabulary,

i.e. the set of all available words.

Since hate speech detection is a task that adopts the classification setting, we also require

an output notation for our classes. Let us then write C = {c1, .., c|C|} for the set of

considered classes as which input sentences, i.e. elements of X, can be classified.

Definition 4. We call a function f : X −→ R|C| a task method or classifier if, taken

x ∈ X, f(x) is a |C|-dimensional vector containing the predicted scores f(x)c for every

c ∈ C.

Remark 1. With f(x)c we mean the normalised class scores, i.e. the class probabilities

P(c | x). They can simply be obtained from the unnormalised scores Sc(x):

f(x)c = P(c | x) =
exp(Sc(x))∑

c′∈C exp(Sc′(x))
.

In case the task of the classifier is hate speech detection, we can also refer to f as hate

speech detection model. Examples of commonly used task methods in NLP are Long Short-

Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997), Gated Recurrent Unit (GRU)

(Cho et al., 2014), and attention models (Vaswani et al., 2017).

Definition 5. Given a task method f and an input sentence x ∈ X. We say that c∗ ∈ C
is the predicted class, or more simply prediction, if

c∗ = arg max
c∈C

f(x)c

In practice, to allow computation of symbolic input such as text, words and sentences

are often encoded in numerical vectors. This can be achieved in several manners. One

of the most common ones is to use a BoW representation x ∈ {0, 1}|V |. Alternatively,

words can be encoded as word embeddings, i.e. as dense vectors xt ∈ Rm (Mikolov et al.,

2013; Pennington, Socher, & Manning, 2014). The embedding dimension m is chosen

arbitrarily and, to represent a sentence x, encoded words can be stacked together in a

matrix, i.e. x ∈ R|x|×m.

The way text is encoded does not play a minor role. On the contrary, it can be crucial for

the success of a task model. For instance, Dhingra, Liu, Salakhutdinov, and Cohen (2017)

shows how initialisation details in the encoding can be more relevant w.r.t. performance

than the classification model itself.
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Figure 10: Notation introduced for layers in a DNN.

We will use the symbol xt to denote a word independently of the used encoding. In the

case in which no particular notation is specified, words can be assumed to be encoded

through an m-dimensional embedding, i.e. xt ∈ Rm. Later, in 3.2, more will follow on

this.

Definition 6. Given a task method f , an input sentence x ∈ X and a class c ∈ C, an

explanation method φ : {1, . . . , |x|}×C×X → R produces word relevance scores φ(t, c, x)

for every word position t. That is, how relevant the word in position t would be for f to

classify x as belonging to class c.

In real-world applications, as given class c, it would often make sense to pick the prediction

c∗ of the method f . This way, φ can be used to give reasons for the decisions taken by f in

an automated process. Here follows an example that should further make the introduced

notation clear.

Example 2. Let us consider the sexist sentence x =“ women should always stay in the

kitchen” and a classifier f that predicts c∗=“ hate speech”, we might expect for instance

that our explanation method φ will consider the words x1 =“ women” and x7 =“ kitchen”

more relevant than the word x4 = “ stay”. With the introduced notation, this translates

to φ(1, c∗, x), φ(7, c∗, x) > φ(4, c∗, x).

Due to the recent success of DNNs and their intrinsic black-box behaviour, some explana-

tion methods are specifically designed to treat them (Bach et al., 2015; Shrikumar et al.,

2017). Hence, w.r.t. our mathematical analysis, it raises the need to adopt additional

symbols for the DNNs’ components that we are going to work with. This extension in

the notation aims to simplify the detailed description of a DNN f .

Definition 7. Let f be a DNN task method. We describe f as a composition of layers,

each of which is composed by a set of units. We use l to indicate a layer and u for a

unit. We can also write u ∈ l if the unit u belongs to the layer l. Then, with au and wuv

we will respectively indicate the activation output for a unit u and the weight between two

units u and v. Finally, σ will denote a generic activation function.
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Figure 11: Notation introduced for units in a DNN.

Figures 10 and 11 sketch how the notation introduced by definition 7 works for layers and

units in a DNN respectively.

With the introduced notions, we are now ready to explore and discuss the various expla-

nation methods. For each one of them, the main mathematical idea is discussed together

with advantages and disadvantages. To pursue a more consistent notation, we follow

Ancona, Ceolini, Öztireli, and Gross (2017), Molnar (2019) and Poerner et al. (2018) in

addition to the original works of each explanation framework.

3.2 Direct Interpretation

As discussed in 2, some task models can be considered to be transparent. If f is trans-

parent and no other explanation technique is necessary, then the classifier can be directly

interpreted. This is usually done by extracting specific information from the model, e.g.

a set of weights or attention scores. Given the space of task methods F , interpretable

models can then be expressed as subset G ⊂ F . If f ∈ G, then we will denote it with g

instead. The following example shows how direct interpretation can be applied and how

it relates to the concept of word relevance φ(t, c, x).

Example 3. Let {w0, w1, . . . , w|x|} be a set of weights and let g be a transparent linear

classifier

g(x)c = w0 +

|x|∑
t=1

wtxt (1)
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that computes the score for a class c. Suppose now that we are interested in explaining the

output g(x)c. It is intuitive to take the coefficients/weights as indicators of the relevance

of their respective feature. This procedure, translated into our notation, is equivalent to

assigning the weights as relevance, i.e. φ(t, c, x) = wt.

Although this example appears to be trivial, a clarification about x’s possible represen-

tations is necessary and is presented in the following.

Remark 2. Suppose that x is encoded in a BoW notation, i.e. x ∈ {0, 1}|V |. Then, a

linear model g can be expressed in the form

g(x)c = w0 +
∑
v∈V

wvxv.

Our definition of relevance scores φ(t, c, x) requires both the model and the representation

for x to preserve the word order. For this reason, we modify both formulations before

attributing relevance scores. x becomes a vector of 1s of the size of the original sentence.

g is transformed and uses a different set of weights wt ∈ R for t = 1, . . . , |x|. Namely,

each wt is extracted from the BoW model’s weight wv corresponding to the vocabulary

entry v ∈ V for the word xt. Thus, g can now be expressed, w.r.t. the specific sentence

x, in the same form as (1).

Thanks to this reformulation process, also shown for clarity in figure 12 as an example,

word order is preserved. Thus, we can proceed with the attribution of the scores φ(t, c, x).

Note that the formulation of g depends on the specific instance x. The definition is not

ill-posed for our analysis since we focus on local explanations.

This representation obtained for x and g will be quite relevant in upcoming sections and

useful to recall.

Definition 8. We call x and g interpretable local representation and localised linear

model respectively with the representations built in remark 2.

Remark 3. If x is instead encoded with a word embedding, i.e. x ∈ R|x|×m, then the word

order is already preserved. But, in this case each word xt is an m-dimensional vector and,

as a consequence, also each weight wt has the same form. When extracting the relevance

as described in example 3, we need to reduce the vectors to a score. This can be done

simply by taking the L2 norm. Hence, φ(t, c, x) = ‖wt‖2.

Although some more complex clarifications were necessary, direct interpretation is prob-

ably the most straightforward and intuitive way of explaining a classifier. It leverages

the fact that the classifier itself already contains, in some form, interpretable information

that can be recovered. Unfortunately, limiting ourselves to use transparent task models

would be quite restrictive as we would not leverage the strength of more complex ML

algorithms.
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BoW Notation

Linear Model

Localised linear model

Interpretable local notation

Figure 12: Example of transformation from BoW model to localised linear model. For

instance, since x2 = “dog”, then we have the assignment w2 = wdog

3.3 Input Perturbation Methods

Input perturbation methods were among the first approaches to be proposed for visual-

ising and exploring the local behaviour of black-box task models. Most of the methods

belonging to this class entered the NLP field by adapting analogous existing approaches

in computer vision (Zeiler & Fergus, 2014). They are based on the assumption that re-

moving important parts of the input x will significantly change the output of the classifier

f . Following this intuition, these approaches systematically alter a part of the input, run

a forward pass with the modified new input, and then compare the new prediction scores

to the ones obtained from the original input. While in computer vision this translates to

perturbing a block of adjacent pixels in the input image (Zeiler & Fergus, 2014), in our

case, it means to perturb one or more words xt ∈ x at a time. This is done, for example,

by either removing the words (Kádár et al., 2017) or by substituting them with a baseline

(Li et al., 2016).

Following the two described ways of perturbing x, we can then define two explanation

models, φocclude and φsubstitute. The relevance scores φ(t, c, x) assigned by both methods

are higher for words xt that caused more significant changes in the predictions of f . The

next example wraps up the procedure in the hate speech detection context.

Example 4. Let us take a sentence x that is classified as c = “ hate speech” with probabil-

ity 0.9. After altering the word x3, the predicted probability drops to 0.8 while it drops to

0.5 if x8 is altered instead. This tells us that x8 has a much bigger impact in f ’s decision.

We could then assign the two relevance scores, φ(3, c, x) = 0.1 and φ(8, c, x) = 0.4, that

are equal to the drop in the predicted probability. This is done for all t = 1, . . . , |x|.
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On the one hand, input perturbation methods have the significant advantage of a straight-

forward implementation and a simple intuition. They are also completely model-agnostic

as they only need to run several predictions for the task model f without really taking

the architecture of f into account. On the other hand, the scores φ(t, c, x) have to be

computed one by one for every t = 1, . . . , |x|. This makes the computation very costly,

especially for longer input texts. In the field of hate speech detection, this problem is

mitigated because often input sentences are rather short, e.g. tweets.

3.4 Backpropagation Methods

Unlike input perturbation methods, backpropagation-based methods are able to compute

the relevance for all input features in one single forward and backward pass (Bach et al.,

2015; Shrikumar, Greenside, Shcherbina, & Kundaje, 2016; Simonyan et al., 2014). To

be more precise, sometimes multiple passes are necessary, but still a constant number of

them, i.e. not depending on the input size.

This category of methods contains more sophisticated approaches that use substantially

different ideas. Some of them, called gradient methods, utilise gradients w.r.t. the input

to backpropagate the relevance. Others, instead, are based on recursive formulas derived

from intuitive principles and do not involve the computation of any derivative. As we will

see, in many cases, new methods are developed to solve pitfalls encountered by previous

ones.

3.4.1 Gradient methods

Simonyan et al. (2014) proposes a first approach, called saliency map, that uses a gradient

to attribute a relevance score to a feature input xt starting from an output score f(x)c.

Simply put, the computed relevance is the partial derivative of the first w.r.t. to the

second, i.e.

grad(t, c, x) =
∂f(x)c
∂xt

.

Complex derivatives can be computed by using the chain rule. Figure 13 shows how such

information, in DNNs, can be computed exactly like backpropagation.

The gradient grad(t, c, x) has the same shape as xt, e.g. a vector with the dimensionality

of the word embedding space. However, in our case we want to assign a numerical score

to the position t. Hence, one possible step to reduce the gradient to a single numerical

score is to take the L2 norm (Bansal, Belanger, & McCallum, 2016). Combining these

two steps gives us the explanation method:

φgradL2(t, c, x) = ‖grad(t, c, x)‖2 =

∥∥∥∥∂f(x)c
∂xt

∥∥∥∥
2

. (2)
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Figure 13: Chain rule applied to the case of figure 11. In this example, for u = 1, 2, 3, 4, 5,

we have
∂f(x)c
∂au

=
∂f(x)c
∂a6

∂a6

∂au
=
∂f(x)c
∂a6

∂σ(x)

∂x
wu6

Intuitively, the L2 norm of the gradient w.r.t. xt represents how much a perturbation

applied to the input feature xt affects f(x)c. Therefore, the biggest relevance score

φgradL2(t, c, x) for some t indicates the strongest sensitivity of the output w.r.t changes in

xt, with no regards for the direction of this change. This is coherent with the notion of xt
being relevant for the final prediction score. Nevertheless, applying the L2 norm prevents

the detection of positive and negative relevance since we ignore everything about the

gradient’s direction. Moreover, in practice, saliency maps appear to be generally noisy

(Samek, Binder, Montavon, Lapuschkin, & Müller, 2016).

Denil et al. (2014) uses a different approach to reduce the gradient to a score. In-

stead of taking the L2 norm, they compute the dot product between the signed gradient

grad(t, c, x) and the embedded input feature xt itself. Evidently, the modification ad-

dresses the obstacles encountered by saliency maps. The change in the reduction step

”sharpens” the previous explanation method to

φgraddot(t, c, x) = xt · grad(t, c, x) = xt ·
∂f(x)c
∂xt

. (3)

The approach does not only take into account the magnitude of the gradient but also its
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direction. Hence, it becomes possible to distinguish positive and negative contribution

from a feature xt.

As pointed out by Shrikumar et al. (2017), both (2) and (3) underestimate the relevance

of input features that saturates an activation function and can introduce discontinuities

in the relevance attribution. The first problem occurs when f uses, for instance, tanh or

sigmoids as nonlinearities, while the second happens in the presence of ReLU activations.

We will discuss these two pitfalls more thoroughly in 3.4.3.

Sundararajan et al. (2017) addresses both fallacies by using a baseline input x̃. Instead

of computing only a single partial derivative w.r.t. xt, it averages its value along a linear

interpolation between x and x̃. Thus, given such interpolation as x̃ + αx with α ∈ [0, 1],

we can build the integrated path of gradients:

grad∫ (t, c, x) =

∫ 1

0

∂f(x̃+ αx)c
∂xt

∂α.

The choice for the baseline is arbitrary. For instance, we could choose x̃t as the embedded

vector with all zero entries. As for the computation of the integral, we have to rely on

approximations such as:

grad∫ (t, c, x) ≈ 1

M

M∑
m=0

∂f(x̃+ m
M
x)c

∂xt
.

By using the approximation of this integrated path, we can craft two new methods. One

that uses the L2 norm reduction as (2) and one that instead uses the dot product with xt
as (3). Formally, we add

φgradL2∫ (t, c, x) =
∥∥grad∫ (t, c, x)

∥∥
2

=

∥∥∥∥∫ ∂f(x̃+ αx)c
∂xt

∂α

∥∥∥∥
2

(4)

and

φgraddot∫ (t, c, x) = xt · grad∫ (t, c, x) = xt ·
∫
∂f(x̃+ αx)c

∂xt
∂α (5)

to our collection of explainability approaches.

So far, we obtained a succession of methods that arise from solving the problem of the

original saliency map approach (Simonyan et al., 2014). To be more precise, we obtained

four from two possible choices of reduction method and two ways to compute the gradient:

in a single point or interpolating with a baseline. Yet, although the integrated gradient

method φgraddot∫ tackles all the pitfalls exposed in this section, approximating gradients

well enough is computationally costly (Shrikumar et al., 2017).

3.4.2 Layer-wise Relevance Propagation (LRP)

If we assume a priori that the task model f is a DNN, then different explanation meth-

ods that can take advantage of its layer-structure are applicable. One of them, called
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Layer-wise Relevance Propagation (LRP), was initially proposed in Bach et al. (2015) for

Fully Connected Networks (FCNs) and Convolutional Neural Networks (CNNs) and then

extended in Arras, Montavon, Müller, and Samek (2017) also for Recurrent Neural Net-

works (RNNs). LRP became quite popular as an alternative to gradient methods. In fact,

it uses a rule-based backward pass on the task model instead of computing derivatives.

Before describing the method, we first need to understand the concept of relevance and

what principles should apply for its computation in a DNN’s architecture. These principles

are expressed in the form of mathematical constraints and are used to build the LRP rules

(Bach et al., 2015).

We can imagine relevance as a quantity that flows from the output to the input. As we

will see later, extending the concept of relevance score for an input feature xt to a general

unit u in f allows us to take advantage of the layer-structure of f . Hence, we let R
(l)
u

denote the relevance score of a unit u in the layer l. By using these quantities, we can

decompose a target class output f(x)c into relevance per input feature xt, or equivalently,

per unit u belonging to the first layer 1. That is

f(x)c ≈
|x|∑
t=1

φ(t, c, x) =
∑
u∈1

R(1)
u .

Simply put, the constraints is equivalent to requiring that the whole output score can be

broken down in input features contributions.

Although every entry of f(x) is in [0, 1], by subtracting 0.5 we can translate it to the

range [−0.5, 0.5]. This change does not affect anything mathematically. Yet, it is quite a

useful trick that allows us to distinguish features with positive and negative contribution

more clearly. Namely, we say that u contributed to the prediction f(x)c if its relevance

R
(l)
u is positive. Otherwise, if R

(l)
u is negative, then u contributed against the prediction

(and perhaps in favour of another class c′).

With the extended concept of relevance, also the notion of decomposing the output score

into input relevance can be extended to a more general concept of relevance preservation

that applies to every layer. This can be expressed as:

f(x) ≈
∑
u∈L

R(L)
u = · · · =

∑
u∈(l+1)

R(l+1)
u =

∑
u∈l

R(l)
u = · · · =

∑
u∈1

R(1)
u (6)

where L indicates the DNN’s last layer before the output. Thus, (6) enforces that the

output f(x)c can also be broken down into relevance per feature at any given layer l and

not only into relevance per input feature xt. In other words, the features in any layer

should be able to ”explain” the final outcome. Note that this principle is not merely

artificially crafted. On the contrary, it is consistent with the idea that the information

contained in any layer is computed from the input layer and is sufficient to compute the

final output.
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It is quite clear that only respecting (6) is not enough. The equation has multiple so-

lutions, some of which are not even meaningful explanations. For instance, Bach et al.

(2015) builds a simple and intuitive example method that satisfies (6) and that always

backpropagates a positive amount of relevance to every feature independently of the in-

put. This scenario is unrealistic in a classification setting. We would expect some input

features having a negative contribution in most cases.

As an additional constraint, we restrict the backpropagation to be between connected

units. That is, when backpropagating the relevance from an unit u in layer l, we would

expect only to backpropagate to the features in layer l−1 that contributed to u. Moreover,

the amount of relevance that backpropagates should be proportional to the contribution,

i.e. relate to the weight wvu for every v ∈ (l − 1).

By putting these constraints together, Bach et al. (2015) builds the LRP recursive algo-

rithm. The method starts from the last layer and uses the target’s neuron output itself as

relevance while setting the relevance of all other neurons to zero. This can be expressed

with

R(L)
u =

f(x)c, if u is the output unit for the target class c

0, otherwise
(7)

Then, LRP proceeds backwards one layer at a time and assigns the relevance scores until

the input layer is reached. As redistribution rule from one layer to the preceding one, the

following recursive formula is used:

R(l)
u =

∑
v∈(l+1)

R(l+1)
v

auwuv

av + ε · sign(av).
(8)

Here, as defined already in 3.1, au and wuv are used respectively to indicate u’s activation

and the weight between u and v. The following example shows the applications of LRP

on a very small and simple DNN.

Example 5. Let us consider the DNN in figure 14. If for instance we want to compute

the contribution of unit 3 for the prediction a7, we have

R
(1)
3 =

∑
v=4,5,6

R(2)
v

a3w3v

av + ε · sign(av)
=

= R
(2)
5

a3w35

a5 + ε · sign(a5)
=

=
a5w57

a7 + ε · sign(a7)
· a3w35

a5 + ε · sign(a5)
.

Here, we used that 3 does not contribute to 4 and that 6 has zero relevance because it does

not contribute to the target 7.
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Figure 14: LRP applied to a simple network with 3 layers and 8 units. Forward pass pre-

diction (left) and computation of relevance scores (right) in a layer-wise backpropagation

fashion.

The reason for adding the small quantity ε · sign(av) is to avoid a null denominator. In

fact, if av is positive (respectively negative) and very close to 0, this could create numerical

instabilities.

Once the input layer 1 is reached, we consider the relevance of all the units relative to an

input feature xt, i.e.

{R(1)
u }u∈xt .

For instance, if xt is a dense vector resulting from a word embedding, then also its corre-

sponding relevance forms a vector of the same dimension. As already done for gradient

methods, we need to reduce the relevance vector to a single score. This can be done by

taking the sum over the entries and leads directly to the LRP overall formulation:

φLRP (t, c, x) =
∑

u∈(xt∩1)

R(1)
u

where, for each u ∈ 1, R
(1)
u is computed by following (7) and (8).

3.4.3 Deep Learning Important FeaTures (DeepLIFT)

Now we examine another approach that, like LRP, is designed explicitly for DNNs. For

this reason, as we did for analysing LRP, we assume that f belongs to the DNN class.

The method, called Deep Learning Important FeaTures (DeepLIFT), was initially pro-

posed in Shrikumar et al. (2016). However, after exciting results from Lundberg and Lee

(2017) followed, an extended version of DeepLIFT was released in a second publication

(Shrikumar et al., 2017).

In some cases, previously examined methods such as φgradL2 , φgraddot , φLRP still pro-

duce misleading explanations. This can happen as they are unable to handle saturation

of activation functions and discontinuities in the backpropagation gradients. DeepLIFT
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Figure 15: High values of x saturate a tanh activation function. Backpropagation via a

gradient method therefore fails. On the contrary, a difference-from-reference tanh(x) −
tanh(x̃) is not zero also when the gradient is.

combines ideas coming from LRP (Bach et al., 2015) and integrated gradients (Sundarara-

jan et al., 2017) to address the two pitfalls. Before exploring the approach, a couple of

examples are presented to show how previous methods fail in handling certain scenarios.

Example 6. Let u be a unit in our task method f with a tanh activation, i.e.

σ(x) = tanh(x) =
ex − e−x

ex + e−x
.

We know that σ saturates since limx→∞ σ(x) = 1. If for instance x > 5, then we already

have

σ(x) ≈ 1 ,
∂σ(x)

∂x
≈ 0.

In this case, as shown in figure 15, methods like φgradL2 (saliency maps), φgraddot (gradient

× input) are unable to backpropagate the relevance as the gradient is 0.

Example 7. Let u be a neuron unit inside f with a ReLU activation and bias of −b, i.e.

σ(x) = max(x− b, 0).

Then, as shown in figure 16, φgradL2 (saliency maps) and φgraddot (gradient × input)

present a discontinuity at x = b. Thus, even a very small change in x can cause enormous

changes in the assigned contribution.

We have already seen some countermeasures against the scenarios described in the two

examples. In fact, as already seen in 3.3, integrated gradients methods φgradL2∫ and φgraddot∫
address this problems by integrating between the original input x and a reference input
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Figure 16: The validity of the relevance scores can be affected by discontinuities in the

gradients. Here is the activation of ReLU with a bias of −b. Both φL2
grad (saliency maps,

top left) and φdot
grad (gradient × input, bottom left) present a discontinuity at x = b in the

assigned contribution. On the contrary, using a reference (right) x̃ provides a continuous

contribution. Figure inspired by Shrikumar, Greenside, and Kundaje (2017, Figure 2).

x̃t. Nevertheless, a good numerical approximation of integrals requires many sample

evaluations and therefore implies a big computational overhead.

DeepLIFT uses a difference-from-reference approach combined with a backpropagation

in the LRP fashion to propagate an importance signal. This combination represents the

strength of the method since it computes quantities that are non-zero even in situations

where the gradient is zero. In this way, as shown in figures 15 and 16, artifacts caused by

saturations and discontinuities can be avoided. At the same time, unlike the integrated

gradients method, the approach is not computationally costly. With all of this in mind,

we now examine the method in more detail.

Let us consider a target class c and its corresponding output neuron f(x)c. By using

the baseline input x̃ and its corresponding output f(x̃)c, we define the difference-from-

reference input for the feature t as ∆xt = xt− x̃t and the relative difference-from-reference

output ∆fc = f(x)c − f(x̃)c. The goal of DeepLIFT is to assign relevance scores R∆xt

to the difference-from-reference input ∆xt in such a way that the summation-to-delta

property holds (Shrikumar et al., 2017, Equation 1):

|x|∑
t=1

R∆xt = ∆fc.

This property is conceptually very similar to the preservation constraint (6) of LRP.
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However, instead of the standard input and output, we use their difference-from-reference

versions. Hence, the entire amount of difference in the output can be attributed to the

difference in the input. In other words, every change in the output w.r.t. a baseline has

to be completely ”justified” by a change in the input. By involving a reference value, the

relevanceR∆xt can be non-zero also when the gradient is zero and levels out discontinuities.

In the original work (Shrikumar et al., 2017), the formulation of the method is quite

complex. It relies on building rules for every operation inside a DNN. In this thesis,

for the sake of a more comfortable and consistent notation, we report a mathematical

description that is closer to the one given in Ancona et al. (2017). The authors express

DeepLIFT in a recursive formulation that is very similar to the one given for LRP in

3.4.2. Nevertheless, instead of assigning an absolute relevance, DeepLIFT propagates a

relative relevance. i.e., proportional to the difference between the activation au with the

original input and the activation ãu when using a baseline x̃.

More formally , (7) and (8) change respectively to:

R(L)
u =

f(x)c − f(x̃)c, if u is the output unit for the target class c

0, otherwise
(9)

and

R(l)
u =

∑
v

R(l+1)
v

auwuv − ãuwuv

av − ãv + ε · sign(av − ãv)
(10)

Once the input layer is reached, we can follow the same sub-procedure used for LRP to

reduce a vector of scores relative to xt to a single numerical value. Hence, similarly to

φLRP , we have

φDeepLIFT (t, c, x) =
∑

u∈(xt∩1)

R(1)
u

where, for each u ∈ xt, R(1)
u is computed by (9) and (10).

With this recursive formulation, on a less strict mathematical level, DeepLIFT can be

seen as LRP with a relative input, i.e.

φDeepLIFT (t, c, x) ≈ φLRP (t, c, x− x̃).

3.5 Global and Local Surrogates

In ML, some task models are inherently more transparent than others. For instance, as

seen in 3.2, a simple linear classifier can be explained by looking at the coefficients of

the input features. On the other hand, the interpretation of methods like DNNs becomes

unfeasible due to the large number of parameters or, more in general, because they are

too complex.



40 3 EXPLAINABILITY OF TEXT CLASSIFIERS: MATHEMATICAL ANALYSIS

It would be ideal if any model, independently of complexity, could be simplified and made

interpretable. Unfortunately, the direct simplification of a model does not seem yet to be

a reasonable choice. It is not clear how to simplify a model without intrinsically changing

it.

Instead of directly simplifying a task model f , one could try to build a copy g ∈ G that

behaves like f but is easy to interpret. This ”simpler copy” can also be referred to as

global surrogate (Molnar, 2019). Naturally, building an exact copy that is also simpler

is not possible. However, an approximation of f could be built by using a simple model

g and then training it on the same data as f . To train the approximating surrogate,

the predictions of f are used as labels instead of the original ground truth. Once an

interpretable surrogate is built, it can be used to explain the output of a singular instance.

The global surrogate approach is very flexible as it does not impose any restriction on g.

Therefore, we could pick any interpretable task model to build our approximating surro-

gate. At the same time, the implementation is quite simple and straightforward. Metrics

to measure how well the surrogate approximates the original model exist (Cameron &

Windmeijer, 1997; Molnar, 2019). However, it is generally not clear what threshold guar-

antees that g is close enough to f (Molnar, 2019).

Approximating a complex model globally with something simple seems quite a hard task.

Not only do we not know, even in theory, if a simple model can in practice approximate

well a behaviour that is orders of magnitude more complex. But also, explaining a single

output is much more accessible than describing a task method f as a whole. With this

motivation, other approaches, instead of seeking to find a global surrogate for f , try to do

it at least locally. These methods build an interpretable model g, called local surrogate,

that approximates the classifier to be explained only around a specific instance. In the

next section, we discuss one popular method that belongs to this category.

3.5.1 Local Interpretable Model-agnostic Explanations (LIME)

One of the most successful explanation methods, called Local Interpretable Model-agnostic

Explanations (LIME) (Ribeiro et al., 2016), directly implements the idea of a local sur-

rogate. In fact, it defines an interpretable model g that is locally faithful (Ribeiro et al.,

2016) to the classifier to be explained.

Before we examine the mathematical details of LIME, we shall sketch the steps of the

method with no formality. We do this with the support of figure 17.

1. Pick a classifier, an input instance, and the corresponding output that we are inter-

ested in explaining.

2. Generate points by perturbing the selected instance and, for each new point, obtain

the prediction from the classifier.
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Figure 17: Flow of the LIME approach to explain the prediction of a classifier f on an

instance x.

3. Weight the newly generated samples based on the proximity to the originally selected

instance.

4. Pick an interpretable model and train it on the weighted generated dataset of vari-

ations and the labels obtained from step 2.

5. Explain the original prediction by interpreting the simple local model.

It is quite easy to see how the locality of the approach is enforced with the creation

of a fake local dataset. We now continue to examine the method from a more formal

perspective.

LIME, to perform step 2-5, uses an additional interpretable data representation x′ ∈
{0, 1}M that differs substantially from the original input x used by the classifier f (Ribeiro

et al., 2016). This additional representation consists of binary features which have a dif-

ferent meaning depending on the data type, e.g. text or images. The following example

shows a choice of interpretable data representation that applies to our hate speech detec-

tion use-case.

Example 8. Let us consider a hate speech detection model f . Its input features for a

sentence x ∈ X, most likely word embeddings, are quite complex and hard to interpret.

We shall consider now the sentence x =“ Chinese people are a big minority in this city”.
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A word embedding with dimension m will map x into R|x|×m. In this case, it is a matrix

in R9×m to be passed to f to classify the sentence.

As a simpler data representation, we can for example represent a sentence by a binary

vector x′. To preserve the word order, instead of using a classic BoW as proposed in

Ribeiro et al. (2016), we can use the interpretable local representation already defined in

8. This way, we have a binary representation x′ ∈ {0, 1}|x|. Note that this is possible

thanks to the fact that the LIME method is formulated around an instance x.

We now consider the already mentioned families, F and G, of classifiers and interpretable

classifiers respectively. Let Ω : F → R be a measure of complexity, meant in this case as

opposite of intepretability, and let πx be a proximity measure. That is, Ω(f) expresses

how complex the classifier f is and, given another input z, πx(z) measures the proximity

of z to x. Finally, given f ∈ F and g ∈ G, let L(f, g, πx) indicate the local fidelity of g to

f , i.e. how good g is as a local approximator.

With the above notation, LIME finds an interpretable model for a sample x as result of

the minimisation

g∗ = arg min
g∈G
L(f, g, πx) + Ω(g).

To build LIME to be model-agnostic, we want to minimise L(f, g, πx) regardless of f . i.e.

we want to learn the local behaviour of f around a specific instance x with no assumption

on the classifier itself. To do so, we draw instances z′ around x′ by choosing non-zero

entries of x′ uniformly at random. Then we recover their original representation z and

weight them by πx. Finally, we retrieve the predictions f(z)c. These are then used as

labels to train g on the perturbed samples z′ and therefore minimise the local fidelity L.

Once the simple local model has been trained, we can explain f(x)c by interpreting g(x′)c
on the instance x that we initially picked.

The abstract notation maintains the description quite general. Thanks to this, the for-

mulation holds for different families G, fidelity function L, complexity measures Ω and

proximity kernels πx. At this point, it remains to put the abstract notions into our hate

speech detection context. This includes taking choices w.r.t. the different measures to

use within the method. To this end, we construct the following example.

Example 9. For an input sentence x, we use the intepretable local representation x′ from

definition 8. In the same spirit as example 8, as family of interpretable models G we pick

linear models localised on x, also defined in definition 8.

Differently from what is proposed in Ribeiro et al. (2016), we do not need an explicit

complexity constraint Ω(g) to make sure that g is interpretable enough. In Ribeiro et al.

(2016) a limit K is set on the number of words considered in a BoW model, i.e.

Ω(g) =

+∞, if ‖wg‖0 > K, wg weights of g

0, otherwise
.
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In our case instead, a linear interpretable model g is kept from being complex thanks to

the localisation process described in 3. Therefore, we can simply set Ω(g) = 0.

As local fidelity, we choose a square loss weighted based on a proximity kernel πx. That is

L(f, g, πx) =
∑

z,z′sampled

πx(z)(f(z)− g(z′))2.

For a hate speech detection model, we need to pick a proximity kernel suitable for text

input data. This can be done, following the same logic as similarity in word embeddings,

by looking at the ”direction” of two different sentences in the original representation space

R|x|×m (Mikolov et al., 2013). The cosine distance computes the distance direction-wise

and can be wrapped in an exponential kernel

πx(z) = exp

(
−cos(x, z)2

σ2

)
where cos(x, z) = 1− x · z

‖x‖2‖z‖2

Note that the choices taken could vary depending on what the interpretability needs are.

For instance, πx is normally chosen based on the input type and the transparent model

family g is at the user’s discretion. We can define the LIME explanation method φLIME

as coming from the direct interpretation of g∗.

In Poerner et al. (2018), based on our same needs, another variation of LIME is built for

task methods that respect word order. This approach, called Local Interpretable Model-

agnostic Substring-based Explanations (LIMSSE), uses a randomly extracted substring

instead of a BoW (or our localised version) to build the interpretable representation.

3.6 SHapley Additive exPlanations (SHAP)

Despite the fast growth of the space of existing methods, many explanation approaches

seem to be closely related (Lundberg & Lee, 2017). One might wonder if there is a more

general theory that could describe explanations from a more abstract perspective. Such

a theory, perhaps missing due to the novelty of the explainability field, could find a more

formal link between existing methods and provide the tools to build new ones.

Lundberg and Lee (2017) presents a unified approach that connects some of the most pop-

ular methods. This novel perspective, besides simplifying the set of existing approaches,

strongly indicates that a unifying theory might exist.

Before we describe formally the new theoretical results introduced in Lundberg and Lee

(2017) and their implications, let us list them in a more informal way.

• A new class of explainability methods is defined, called additive feature attribution

methods. The elements of this class provide explanations by building a simpler

transparent model that locally approximates the original model to be explained.

• Six existing methods are proven to belong to this class. This includes the already

studied LRP, DeepLIFT and LIME together with three older methods from the field
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of game theory (Datta, Sen, & Zick, 2016; Lipovetsky & Conklin, 2001; Štrumbelj

& Kononenko, 2014).

• For additive feature attribution methods, three desirable properties for good expla-

nations are formally introduced.

• It is proven that, within the additive feature attribution methods class, there is a

unique local model that has to be built to fulfil all desirable properties.

• Existing methods in this class need to be adapted to build this optimal local model.

The improved versions of these methods are grouped together under the name of

SHapley Additive exPlanations (SHAP).

For a simple and interpretable model, the best explanation is the model itself. For more

complex models, this does not hold. As we have already discussed in 3.5, trying to

simplify or to globally approximate it with a simple one has considerable drawbacks.

Local methods like LIME instead approximate f only around a specific instance x. This

follows the assumption that even complex models are locally simple. Thus, considering

models only locally reduces the gap between a complex model f and a simple model g.

As also mentioned in 3.5.1, the interpretable model g uses a a simplified representation

x′ which can map to the original input x through the mapping x = hx(x′). Once more,

local approaches have to ensure local fidelity, i.e. g(z′) ≈ f(hx(z′)) whenever z′ ≈ x′.

Definition 9. (Lundberg & Lee, 2017, Definition 1) Additive feature attribution methods

have an explanation model g ∈ G that is a linear function of binary variables:

g(x′) = φ0 +
M∑
t=1

φtx
′
t

where x′ ∈ {0, 1}M , M is the number of simplified features and φt ∈ R ∀t.

In other words, methods using an interpretable model g that matches definition 9 attribute

an effect φt to each feature plus a default effect φ0. The latter indicates the bias of g, i.e.

the expected average output, also called base value or baseline.

Already in older literature, in particular in the field of cooperative game theory, one can

find explanation methods (Datta et al., 2016; Lipovetsky & Conklin, 2001; Štrumbelj &

Kononenko, 2014) that have been proven to belong to the class of definition 9 (Lundberg

& Lee, 2017). At their foundation, there is a concept called Shapley values. This was

introduced by Shapley (1953) more than 60 years ago for cooperative games. The original

purpose of Shapley values is to explain how to fairly distribute a payout among the players.

In our domain, each feature can be thought of as a player and the payout as the feature’s

relevance/effect. In the following, we explore the meaning of this quantity more in detail.

Following the game theory definition, the Shapley value φt of a feature xt is the average

marginal contribution of its value across all possible coalitions (Molnar, 2019; Shapley,
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1953). This notion may appear quite confusing in our context. Hence, as done in Molnar

(2019), we reformulate it in a more formal and perhaps clearer way.

Definition 10. Let us consider the output f(x)c to be explained and let S be a subset of

the features of x, i.e. S ⊂ {xt}Mt=1. Let xS be the input x where the features not in S are

set to 0. Then, for t = 1, . . . ,M , the Shapley value φt of xt is

φt =
∑

S⊂{xi}Mi=1\{xt}

|S|!(M − |S| − 1)!

M !
(f(xS∪{xt})− f(xS))

and, for t = 0, we have the default value φ0 = f(x∅).

Note that |S|!(M−|S|−1)!
M !

is simply the number of possible choices for the subset S and works

as a normalisation term.

Interestingly, Shapley values φt and our concept of feature relevance φ(t, c, x) are equiv-

alent when we perform direct interpretation on a localised linear model as g ∈ G. We

prove this in the following theorem. In other words, when we extract some weights from

a localised linear model g to explain the output, we are actually looking directly at the

Shapley values.

Theorem 1. Let g be a localised linear model on an instance x, then the following claims

about g hold:

1. Direct interpretation of g is an additive feature attribution method.

2. Given a class c, the Shapley values φt and the features’ relevance φ(t, c, x) match

for every feature xt. Therefore, using the same notation φ(t, c, x) for both is indeed

consistent.

Proof. From definition 8, let us consider g ∈ G to be a localised linear model on an

instance x. Ergo, g is an interpretable model that uses the input in its interpretable local

representation x′ ∈ {0, 1}|x|. We denote g by using the set of weights {w0, w1, . . . , w|x|},
i.e.

g(x′) = w0 +

|x|∑
t=1

wtx
′
t.

Regarding the first claim, it is immediate to see that the direct interpretation of g respects

definition 9 by using itself as explanation model with M = |x|. Now it is left to prove that

∀t = 1, . . . , |x| we have the equivalence between the Shapley value φt and the features’

relevance φ(t, c, x). The latter quantity, since g is a simple linear model and can be

interpreted by looking at the weights, is equivalent to the weight wt.

If t = 0, then by definition φt = g(x′∅) = w0 where the last equivalence holds because

S = ∅ =⇒ x′t = 0 ∀t > 0.
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If t > 0, then by definition

φt =
∑

S⊂{x′
i}

|x|
i=1\{x′

t}

|S|!(|x| − |S| − 1)!

|x|!
(g(x′S∪{x′

t})− g(x′S))

Due to the simplicity of g, in this case it is possible to explicitly compute its output for

a feature subset S. In fact, we have

g(x′S) = w0 +
∑
t∈S

wtx
′
t

g(x′S∪{x′
t}) = w0 + wtx

′
t +
∑
t∈S

wtx
′
t

and therefore

g(x′S∪{x′
t})− g(x′S) = wtx

′
t = wt.

The last equality holds as x′t = 1 when considering S ∪ {x′t}.
By plugging the result, the following holds:

φt =
∑

S⊂{x′
i}

|x|
i=1\{x′

t}

|S|!(|x| − |S| − 1)!

|x|!
wt =

= wt

∑
S⊂{x′

i}
|x|
i=1\{x′

t}

|S|!(|x| − |S| − 1)!

|x|!
=

= wt = φ(t, c, x).

Remark 4. Thanks to this proof, by setting φ(0, c, x) = φ0, the definition of localised

linear model can be rewritten using directly the Shapley values:

g(x)c = φ(0, c, x) +

|x|∑
t=1

φ(t, c, x)xt = φ0 +

|x|∑
t=1

φtxt.

So far, we know that Shapley values are a very useful tool for some explanation algorithms

inspired by game theory that fall in the class of additive feature attribution models. At

the same time, we have proven how they match precisely the features’ relevance in case

we use a localised linear model as an explanation model g. But how do they relate to

the popular methods we examined in the previous sections? To answer this, Lundberg

and Lee (2017) connects several existing approaches to the class that we introduced. For

better comprehension and consistency, the following theorem groups these results from

Lundberg and Lee (2017, Sections 2.1, 2.2, 2.3) all together.

Theorem 2. LIME (Ribeiro et al., 2016), DeepLIFT (Shrikumar et al., 2017) and LRP

(Bach et al., 2015) belong to the class of additive feature attribution methods.



3.6 SHapley Additive exPlanations (SHAP) 47

Proof. The definition of LIME naturally adheres to our class of methods. Indeed, LIME

builds an interpretable model g that uses a simplified input x′ ∈ {0, 1}M and locally

approximates f . How x′ is built and how it can be mapped back to the original input

x = hx(x′) depends on the task. Nevertheless, it is always consistent with definition 9 if

we use linear models as family G. All the details on how g is built, and consequently on

how the φLIME(t, c, x) are computed, have been discussed in 3.5.1. It has also be shown

in example 9 that LIME can use a localised linear model as g.

DeepLIFT instead, attributes to each input xt a value R∆xt that represents the relative

effect of xt when compared to a reference value x̃t. In a simplified binary representation

x′ ∈ {0, 1}M , we can think of the 1s as representing the usage of the original value and

the 0s for the reference value. This implicitly defines an intepretable model g, in which

x = hx(x′) converts a binary input to the original input. Therefore, by letting φ0 = g(x̃t)

and φt = R∆xt for t > 0, we have that the model g built by φDeepLIFT is an additive

feature attribution method.

Finally, as seen in 3.4.3, LRP is equivalent to DeepLIFT with reference input x̃ set to 0.

Therefore, with the same argumentation as for φDeepLIFT , we have that also φLRP matches

definition 9.

This result shows us how methods that can differ a lot in appearance are actually strongly

linked by the concept of Shapley values. In this case, LIME, DeepLIFT, and LRP appear

to be a different version of the same type of method. More specifically, they only differ

in the meaning assigned to x′ and in the way g is built.

It seems natural now to wonder if other methods belong to this class, perhaps even some

among the ones we already explored. One way to answer this could be to manually inspect

how other methods implicitly build g and x′ and from there derive better ways of doing

it. Instead, Lundberg and Lee (2017) takes a more indirect, but more effective strategy,

that we present in the following. The authors ask themselves what desirable properties an

ideal additive feature attribution method should have and then understand how to build

a method that fulfils them.

Hence, as done in Lundberg and Lee (2017), let us now define three properties that

are intuitively helpful for obtaining good explanations. The first property, called local

accuracy, enforces that an excellent local approximation should at least match f on the

instance x.

Definition 11. (Lundberg & Lee, 2017, Property 1) Suppose that g is built to locally

approximate f at x and x = hx(x′). We say that we have local accuracy if

f(x) = g(x′) = φ0 +
M∑
t=1

φtx
′
t

Another desirable property, named missingness, states that missing features should not

impact the explanation.
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Definition 12. (Lundberg & Lee, 2017, Property 2) Let g ∈ G the intepretable model,

then we say that we have missingness if

x′t = 0 =⇒ φt = 0

Finally, a slightly more complicated property is introduced: consistency. When a feature

x′t ∈ {0, 1} has a more significant impact on a model f ′ than a model f regardless of other

inputs, then that input’s attribution φt should also be more prominent.

In the following, we indicate with x′ \ t the input x′ if we set x′t = 0.

Definition 13. (Lundberg & Lee, 2017, Property 3) We say that our explanation method

has consistency if the following holds. For any two models f, f ′, if

f ′(hx(x′))− f ′(hx(x′ \ t)) ≥ f(hx(x′))− f(hx(x′ \ t)) ∀x′ ∈ {0, 1}M

then, also φt is bigger for f ′ than for f .

LIME, DeepLIFT and LRP have missingness by default, but do they respect the other two

properties? The following result proofs that only methods adopting the Shapley values

respect all three properties at the same time. Therefore, if one of these methods operates

without them, then it lacks either local accuracy or consistency.

Theorem 3. (Lundberg & Lee, 2017, Theorem 1) Let f be a task method to be explained.

If one uses an additive feature attribution method, only one possible explanation model g

satisfies definitions 11, 12 and 13:

φt =
∑
z′⊂x′

|z′|!(M − |z′| − 1)!

M !
(f(hx(z′))− f(hx(z′ \ t)))

where |z′| is the number of non-zero entries in z′, and z′ ⊂ x′ represents all z′ vectors

where the non-zero entries are a subset of the non-zero entries in x′.

Proof. See Lundberg and Lee (2017) and Young (1985).

This fundamental result shows that the usage of Shapley values in existing explanation

models is required to have the desirable properties detailed above. A specific choice can

ensure this in some of the method’s components. For example, in LIME, a suitable choice

for the measure Ω should be made.

These specific choices do not imply any conceptual change in the previously examined

methods. Therefore, we do not discuss them. For further details, we refer to Lundberg

and Lee (2017, Section 4). The combination of Shapley values and existing methods led

to the implementation of two new methods: KernelSHAP (LIME + Shapley values) and

DeepSHAP (DeepLIFT + Shapley values) (Lundberg & Lee, 2017).

It is interesting to notice how, since localised linear methods are intrinsically using Shapley

values by theorem 1, they also respect local accuracy, missingness, and consistency.
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3.7 Evaluating and Choosing an Explanation Method

Explainability of ML methods is gradually becoming as important as performance. The

available frameworks for explaining black-box models are already many and increasing in

number (Guidotti et al., 2019). With all these options offering to give good explanations,

it becomes hard to understand which one to prefer over the others. At the same time,

we have seen how works like Lundberg and Lee (2017) manage to simplify the choice by

creating a unified view of different existing methods. Yet, our question on which method

to pick is still to be answered.

Unfortunately, as already discussed in 2.1.3, there are no obvious performance metrics

for explanations. Hence, there is no simple way of assessing how good an explainability

approach is with a numerical score. On the other hand, we know that comparisons can

be made via some evaluation techniques: application-grounded, human-grounded, and

functionally-grounded (Doshi-Velez & Kim, 2017).

For our particular case, many functionally-grounded evaluation studies can be found (An-

cona et al., 2017; Arras et al., 2016; Poerner et al., 2018) for NLP classifiers. However,

their evaluation results differ substantially from each other. This supports the hypothesis

that evaluation results are highly dependent on the chosen evaluation paradigm. For in-

stance, Ancona et al. (2017) shows φocc, φgraddot , and φgraddot∫ tied for the best performance

while Poerner et al. (2018) reports better results for LRP, DeepLIFT, and LIME.

Nevertheless, Poerner et al. (2018) carries out a comprehensive review and, unlike the

other works, does not uses syntactically broken inputs that can introduce artefacts (Sun-

dararajan et al., 2017). Also, their results are more coherent with what we found to be the

methods with the most reliable theoretical background. Hence, we pick LRP, DeepLIFT,

and LIME as potential candidates of our choice.

Since LRP is a special case of DeepLIFT that theoretically still has the pitfalls discussed

in 3.4.3, we exclude it from our list of preferred methods. At the same time, Poerner et al.

(2018) does not include yet the results introduced by SHAP (Lundberg & Lee, 2017). The

advantages of using Shapley values, as we have seen, are strongly backed up by theoretical

results. Moreover, SHAP’s explanations have been empirically found to be more coherent

with human intuition (Lundberg & Lee, 2017).

From a practical perspective, it is worth mentioning that the implementation available for

DeepLIFT 1 only supports (at the moment) a few types of DNN operations. In contrast,

SHAP 2 and LIME 3 repositories support a wider variety of task methods.

We take into account the theoretical results, the different results from the most relevant

experimental comparisons, and the available implementations. In conclusion, we encour-

age the usage of LIME and DeepLIFT in their SHAP variants. That is, the method

1https://github.com/kundajelab/deeplift
2https://github.com/slundberg/shap
3https://github.com/marcotcr/lime
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KernelSHAP (Lundberg & Lee, 2017) in case one is interested in a model-agnostic expla-

nation method and DeepSHAP (Lundberg & Lee, 2017) in case f is a DNN.

Ultimately, in this work, we tried to back up these suggestions using multiple perspectives.

Nonetheless, we should not forget that there is no definitive and absolute answer to the

question of which explanation method should be used. In general, no approach seems to

be intrinsically superior to the others. Thus, as already discussed in 2.1.3, possible choices

should still take the use-case and the explainability goals into consideration.
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4 Towards Explainable Hate Speech Detection

Automatic hate speech detection is challenging for several reasons such as subtleties in

the language and limitations in available data. At the same time, recent methods can be

hard to interpret and therefore, as discussed in 2.2.1, not suitable for real-life applications.

As already discussed in 2.2.2, interpretability for hate speech detection is only in its early

stages and only a few contributions can be found (MacAvaney et al., 2019; Rizoiu et al.,

2019; Wang, 2018). This is especially true for detection methods that make use of social

features such as user information and relationships. To the best of our knowledge, this is

the first work that explains the behaviour of such models.

In this chapter, we explore new possible interpretability techniques for hate speech de-

tection. We also show practical applications of the proposed approaches and how the

existing research can benefit from them. As we will see, our explainability techniques

facilitate crucial observations about datasets and models. Hence, it gives us more insights

and provides us with tools to improve future methods.

To begin with, in 4.1, we closely analyse a hate speech detection benchmark on which

current methods achieve poor performance in one of the classes. We review the find-

ings from an earlier analysis and we compare it to ours, conducted with more recent

explainability methods. In 4.2, we explain detection models that incorporate context, in

the form of social features. Experiments show the benefits of considering social traits in

terms of accuracy. Moreover, we are able to clearly illustrate how such features are used

by the model to enhance prediction performance. We also discuss how our techniques can

be combined with artificially crafted tweets for examining specific scenarios. Finally, we

point out the importance of the target audience and observe how our techniques can be

adapted for different types of final users.

4.1 Explainability as a Dataset Analysis Tool

In this section, we make use of an explainability approach to understand why models per-

form poorly on the hate detection benchmark introduced by Davidson et al. (2017). The

employment of explainability reveals itself extremely useful as it exposes otherwise hidden

patterns in the classifier’s behaviour. Our analysis shows that the dataset’s construction

is a major cause of the models limited detection capabilities. As a result, we recommend

future benchmarks to use a different task formulation from the one adopted in Davidson

et al. (2017).

To begin with, in 4.1.1, we briefly introduce the benchmark from Davidson et al. (2017)

and remark the authors’ motivation to construct such a detection task. In 4.1.2, we discuss

an analysis previously carried out by Wang (2018) on the benchmark and review their

results. Finally, in 4.1.3, we extend the analysis with more recent explainability tools.

Concretely, we build and train a detection method on the benchmark. The model is then
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explained via DeepSHAP (Lundberg & Lee, 2017). The resulting explanations help us

draw conclusions about the model and the data.

4.1.1 The Davidson Benchmark for Hateful and Offensive Language

Motivated by the missing distinction between hate speech and offensive language in pre-

vious works, Davidson et al. (2017) creates a dataset in which they separate the two

in different classes. Throughout, we refer to this dataset as the Davidson Benchmark.

Davidson et al. (2017) implicitly defines offensive language as the usage of offensive words

and argue that not all instances of offensive language are hate speech. The authors ex-

plain how the same word might or might not be hateful, depending on the context. For

instance, the word “nigga” is also used by black people to address each other in everyday

life and thus not only found as a hate term. The authors conclude that future work should

also make use of more fine-grained labels and account for context and heterogeneity in

hate speech usage.

Davidson et al. (2017) collects, via the Twitter API, over 85 million tweets containing

hate speech lexicon from the time-line of 33,558 users. Then, they randomly sample a

subset of 25,000 tweets, which are labelled manually via crowdsourcing as one of three

classes: hate, offensive, neither. Annotators were explicitly asked to think not just about

the words contained in a particular tweet but also about the context in which they were

used. The resulting dataset is distributed as 5% hate speech, 76% offensive language, and

16.6% neither (Davidson et al., 2017). After discarding tweets with no majority in the

annotators’ votes, the authors put together a final collection of 24,802 labelled tweets.

Furthermore, Davidson et al. (2017) trains and tests several detection methods on the

dataset. Among the models achieving the highest performance (0.90 F1 score), an L2-

regularised Logistic Regression is picked as the final framework. The authors report

poor performance on the hate class and observe that most of the misclassification occurs

between the hate and offensive classes. Concretely, a lot of hateful tweets are wrongly

classified as offensive. The authors claim this effect is caused by the presence of offensive

terms that can eventually distract the classifier from more hateful slurs.

Other works that benchmarked on the dataset introduced in Davidson et al. (2017) also

achieve a meagre performance on the hate class. For example, Rizoiu et al. (2019) builds

two models that achieve 46% and 53% accuracy on hate messages respectively, while

performing on average well above 80% on other classes. As we will see in the next

sections, this big leap in performance among different classes motivated analysis on the

benchmark. The big leap in performance among different classes motivates a thorough

analysis of the benchmark, which we cover in the upcoming sections.
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4.1.2 Previous Analysis of the Davidson Benchmark

Wang (2018) implements a SOTA method for detection based on a convolutional -GRU

(Zhang, Robinson, & Tepper, 2018) and tests it on the Davidson Benchmark. The model

easily surpasses 80% as overall accuracy while reaching only 31% on hateful tweets. To

further understand these results, they revisit some simple explainability techniques from

computer vision and adapt them to the hate speech recognition use-case. These techniques

focus on visualising sensitive regions of the input, i.e. words in a sentence, or identifying

the features learnt by individual neurons. Input sensitivity is computed via perturbation

of the initial sentence, in the same way as we described in 3.3. Features learnt by a unit

in a DNN can be extracted by finding the features that maximise the unit’s activation

(Wang, 2018).

As a result of their experiments, Wang (2018) identifies several weak points of the target

model when trying to recognise hate in tweets:

• Overlocalisation: this indicates the hyper-sensitivity of the classifier’s decision w.r.t.

a particular part of the input (e.g. a word or two) rather than the entire context.

This type of error appears in long sequences, which often are misclassified as offensive

(Wang, 2018).

• Lack of sensitivity: the model does not show sensitivity w.r.t any part of the input.

This occurs in long sentences, often part of the hate class, that do not present

particularly offensive terms (Wang, 2018).

• Unintuitive features: in some cases, the model shows sensitivity w.r.t. input parts

that are not intuitively correlated with the output. This behaviour appears in the

misclassified samples of each class (Wang, 2018).

• Classes discretisation: hateful samples are often misclassified as offensive. This is

caused by the discretisation between the hate and offensive classes, which naturally

intersect. In other words, there is an overall tendency of the model to classify

sentences that contain insults as offensive and miss the underlying presence of hate

(Wang, 2018).

Wang (2018) argues that the first three pitfalls can be addressed by changing the model’s

architecture or, more in general, the detection approach. The last one, instead, is inherited

from the data itself. In this case, the authors claim that misclassified samples do not

indicate a faulty model, but rather express the challenge resulting from the complex

linguistic similarity between hate speech and offensive language. Ergo, the detection

performance is inevitably affected by the insufficient class separability.
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Figure 18: Architecture of the BiLSTM detection network utilised for our analysis.

4.1.3 A SHAP-Driven Benchmark Analysis

We now make use of a different explainability technique based on the results of our

mathematical analysis in 3. We build a simple detection model and analyse some of

its predictions. Based on our experimental results, we will argue that the benchmark

and detection models would benefit from a change in the task design. In other words, we

suggest that the detection benchmark fabricated in Davidson et al. (2017) should undergo

some modifications. We also conjecture that a larger share of the pitfalls mentioned by

Wang (2018) can be attributed to the data itself rather than the detection model.

To support these claims, we build on the experimentation in Wang (2018). Concretely,

we build a detection model that we then explain by means of more recent explainabil-

ity techniques. For this purpose, we design a detection model based on a Bidirectional

LSTM (BiLSTM). The model, as also sketched in figure 18, has a word embedding step

followed by a BiLSTM layer as the main body. The output is then flattened and fed to a

Fully Connected (FC) layer to compute class probabilities.

Tweets are preprocessed before being fed to the model. First of all, we annotate terms

belonging to categories like url, email, percent, number, user, and time. For instance,

“341 ” is replaced by “<number>”. Then, we perform word segmentation and spell cor-

rection based on Twitter word statistics. Both methods and statistics were provided by

the ekphrasis 4 text preprocessing tool (Baziotis, Pelekis, & Doulkeridis, 2017).

As for the model’s implementation, we use Keras 2.3 (Chollet, 2015) with Tensorflow

back-end 1.14 (Abadi et al., 2016). Individual words are embedded as 128-dimensional

vectors. For training and evaluation, we use 60% of the dataset as training set and equally

split the remaining samples in validation and test set, i.e. both 20% of the initial dataset.

The performance of the model, although not the focus of this work, is comparable to the

one achieved by recent methods (Davidson & Weber, 2019; Founta et al., 2019). The

4https://github.com/cbaziotis/ekphrasis
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Speech Model Results (F1 Scores)

Class Our Model Davidson and Weber (2019) Founta et al. (2019)

Hate Speech 0.30 0.4 -

Offensive Language 0.95 0.92 -

Neither 0.84 0.87 -

Overall 0.90 - 0.89

Table 1: Per class and overall F1 scores of our detection method in comparison to

Davidson and Weber (2019) and Founta et al. (2019). We use - to indicate missing

entries from the other works. Our model’s scores are averaged over 5 runs with different

train/validation/test sets.

results are laid out in table 1 in terms of per class and overall F1 score. As already

mentioned for other methods benchmarking on Davidson et al. (2017), one can notice

how also our model performs poorly on the hate class. For completeness, we report that

additional BiLSTM and fully connected layers did not lead to any improvement in terms

of performance.

To interpret our recognition method, we want to utilise a local post-hoc approach that

provides feature attribution scores. Therefore, following our argumentation and sugges-

tions from 3.7, we pick the DeepSHAP method (Lundberg & Lee, 2017).

As a short recap, DeepSHAP is a method tailored to DNNs that combines DeepLIFT

and Shapley values. It explains a model’s prediction by computing the input features’

contributions w.r.t. a baseline. The baseline, which we denoted in 3.6 by φ0, is computed

by averaging the model’s output across several samples and measures its background bias.

Following the implementation guidelines from Lundberg and Lee (2017), we generate our

baseline with a large amount of randomly selected tweets (in our case, 200). We then

use DeepSHAP to analyse a few tweets from the hate class misclassified as offensive. In

figures 19, 20 and 21 we report some concrete examples. The explanations are shown in

the form of force plots, where every feature can be thought of as a positive or negative

force that moves the predicted score, starting from a base value. In our case, the features’

forces represent the words’ contribution, and the base value is the classifier’s bias φ0. The

force plots are w.r.t. the predicted class, i.e. offensive language.

Our technique constitutes a significant improvement over the approach in Wang (2018).

The explainability method used in Wang (2018) looks at model sensitivity w.r.t. input

words but neglects the sign of the contribution. In other words, their method cannot

show which words contributed positively and which one negatively to the predicted class.

Our analysis, on the other hand, lets us see in which direction words contribute to the

prediction and not just the overall importance of a word. In each example, we see the

model’s prediction for every class on top together with the ground truth label. Below

that, the preprocessed tweet is shown together with its corresponding explanation in the
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Figure 19: Directed hate misclassified as offensive language with very high confidence

(94%). The two words “bitch” and “faggot” are the two main positive contributors to the

score. Although the two words are indeed offensive, they misdirect the classifier which

misses the clear hate emerging from the tweet.

form of a force plot.

At first sight, one can immediately notice how the base value for the offensive language

class is very high. Indeed, φ0 is almost 85%, while one would expect something around

33% in a classification setting with three classes. The value expresses how the model is

strongly biased towards classifying tweets as offensive. This confirms or rather explains

the high F1 score in table 1 for the offensive class. It seems quite clear that the bias

originates from the large portion of offensive tweets in Davidson et al. (2017) (more than

75%).

From the examples, it clearly emerges how offensive words like “bitch” or “nigga” push

in favour of the offensive class. Although this is in principle correct, this leads to the

classifier misclassifying sentences as offensive also when offensive words are used in a

hateful context. Hence, samples are overall rarely classified as hate. This explains the low

F1 score for hate in detection models that benchmark on Davidson et al. (2017), including

ours.

Due to the design of the classification task in Davidson et al. (2017), the hate and offensive

classes necessarily exclude each other. Offensive words and slurs are found on both sides

of the force plot, supporting one of the two possible prediction outcomes. Although we

agree with Davidson et al. (2017) that a further distinction between offensive and hate

speech is necessary, we argue that classes’ ”competition” is not beneficial for the task.

The classifier has to decide on whether a tweet is either hateful or offensive, where one

choice excludes the other by design. Our explainability technique shows how this lead

to offensive words contributing to one single outcome. As a consequence, most of them

support the offensive class due to its bigger size within the dataset.

Our interpretation of this classifier suggests that the task should be adjusted to eliminate
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Figure 20: Another tweet with directed hate misclassified as offensive language, but this

time with lower confidence. While the word “bitch” is found again as a positive con-

tributor, the term “fucking” and the sexist slur “whore” keep the score from increasing.

Overall, the output score is much lower than the base value, indicating how some feature

induced the classifier to consider the tweet as hateful. This is unfortunately not enough

given the high bias of the model towards offensive language.

the competition between the two classes that intersect. One possible solution would be to

switch to a multi-label classification task, where multiple classes are allowed as a predicted

outcome. In this way, the two scores for offensive and hate are not competing and words

can contribute to the detection of both.

We conjecture that also other problems such as overlocalisation, lack of sensitivity, and

unintuitive features (Wang, 2018) would be less severe in a multi-label setting. The model

could now learn to detect hate as a subset of offensive language and does not require words

to stand for a single class.

On a more general note, we wonder if hate speech detectors purely based on text are ideal

for the task or whether they suffer from a lack of context. Nevertheless, they are forced

to learn a rule that connects some words in the input to a specific class of speech. The

following example shows how some sentences are intrinsically not classifiable as hate or

neutral without taking into account the context.

Example 10. Let us consider the sentence “ oh my nigga you should be careful”. This

sentence can be hateful or not, depending on who says it, or more in general, depending

on the context. The word “ nigga” is a commonly used slang word in the black community.

On the other hand, the same sentence sounds like a threat when said by any non-black

person, especially if the author has a history of racist behaviour.

This example shows how the exact same sentence should be classified differently depending

on the context. Unfortunately, pure text classifiers are intrinsically not context-aware.

This motivated a part of the existing research to include user traits and other kinds of
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(a) Directed racism/homophobia

(b) Generalised racism

Figure 21: Two examples of racist tweets. Both sentences contain racial slurs like “nigga”.

In one tweet the slur is directed at one user (a) while in the second one it has a more

general target (b). Both tweets are classified as offensive but also report a relatively

high hate score. The two slurs “niggah” and “nigga”, although synonyms, contribute in

opposite ways to the prediction.
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social features in hate speech classification and will be the object of discussion in the

following section.

4.2 Explainability and Social Features

Earlier in this work, the importance of context has emerged. Especially regarding hateful

content detection, as mentioned in the previous section, solely relying on text seems a

limitation. Social media platforms like Facebook and Twitter possess a colossal amount

of user data, that we refer to as social features. This information might contain many

useful features that could be employed to improve the detection of abusive behaviour.

Believing in the potential of social features, several works used them successfully to im-

prove recognition performance. As already mentioned in 2.2.2, the literature is populated

by a large variety of methods. For instance, some include the user’s number of follow-

ers or friends (Chatzakou et al., 2017; Unsv̊ag & Gambäck, 2018). Others model social

interactions with a graph and measure properties such as betweenness and eigenvector

centrality (Ribeiro et al., 2018).

Despite the large number of detection frameworks that include social features, inter-

pretability has not been yet considered in this setting. To the best of our knowledge, this

is the first work that also focuses on explaining the behaviour of hate speech detectors

that include social information.

In this section, we make a first step towards interpreting the effect of social features such

as user traits and relationships in detection models. In 4.2.1, we describe the setting of

our experiments by presenting the utilised data and detection models. In particular, we

depict what social features we make use of and report the models’ performance results.

Following, in 4.2.2, we discuss the interpretability of social features. We show that their

contribution to the output can still be calculated via Shapley values. Also, our experimen-

tation empirically proves their usefulness. Then, in 4.2.3, we use explainability to seek

a more in-depth understanding of why models benefit from having social information.

We do so via exploring what the models have learnt via visualising their latent space.

Afterwards, in 4.2.4, we observe the behaviour of our models on an artificially crafted

tweet, i.e. not belonging to the dataset. We show how effective this type of analysis can

be, particularly when combined with the techniques introduced earlier. Finally, in 4.2.5,

we discuss the importance of considering the target audience of our explanations. Based

on this discussion, we also look at how our techniques can be adapted depending on the

final user.

4.2.1 Experimental Setup and Performance Results

In our experiments, we compare two models, one purely based on text and one that also

takes into account additional information about the users and their interactions. As in 4.1

we exposed fallacies in the construction of the Davidson dataset (Davidson et al., 2017),
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Figure 22: The architecture of our text model.

we do not use it further to benchmark our models. Instead, we pick another popular

detection benchmark from Waseem and Hovy (2016). This dataset contains labels for

different types of hate: sexism and racism. As we will see, this leads to insightful results

that characterise how detection models perceive different types of hate.

The collection was originally composed of 16,914 labelled tweets (Waseem & Hovy, 2016).

We were only able to retrieve 16,849 of them as some are not available anymore via the

Twitter API. The tweets are divided into three classes: 3,378 in sexism, 1,970 racism,

11,501 neither. As already mentioned in 2.2.1, most of the disagreement between annota-

tors was w.r.t. the sexism class, where class membership seemed not always explicit and

straightforward to identify. Besides the tweets, we also want to model the relationship

of their authors. To this end, we also create an undirected unlabelled community graph

where nodes represent users, and the edges are the connections between them (Mishra

et al., 2018). Namely, two nodes, i.e. users, are connected if one of them follows the other

one. Eventually, we have a total of 2,031 nodes and 5,514 edges. The average degree of a

node is 2.714 and 824 users are not connected to anyone else. Overall, the graph’s density

D =
2 ·#edges

#nodes · (#nodes− 1)

is 0.002674, thus indicating a very sparse network.

For a fair comparison, the two models use the same BoW representation for the input

tweets. We limit the representation to the 5000 most common words due to memory

constraints. As for implementation and preprocessing, we apply the same procedure as

we did in 4.1 for the Davidson benchmark (Davidson et al., 2017).

The first model, shown in figure 22, purely utilises the tweets as input. The text is

processed by two FC layers, which output probabilities for the three speech categories.

We refer to this method as text model.

The second model instead has multiple input sources: the tweet, the user’s vocabulary,

and the follower network. The first is the same input as our text model. The second is
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Speech Model Results (F1 Scores)

Class Text Model Social Model

Racism 0.711 0.735

Sexism 0.703 0.832

Neither 0.881 0.907

Overall 0.829 0.872

Table 2: Comparison between our text model and our social model. We report, for each,

the overall and per class F1 scores. Again, all scores are averaged over 5 runs with

randomly picked train/validation/test sets.

constructed from all the tweets of the author and represents their overall writing style.

Concretely, we merge the tweets in their BoW representation, i.e. we apply a logical-OR

to their corresponding vectors. The result is a BoW representation for the user, containing

all the words used by the user in their tweets. The third, instead, is the follower network

of the tweet’s author and describes their surrounding community. On a more technical

note, this can be extracted as a row from the adjacency matrix of our community graph.

Both types of social features, i.e. the second and the third input, can also be found in

SOTA models on the same benchmark (Mishra et al., 2018; Mishra et al., 2019a).

Regarding the architecture, the different input sources are processed in separate branches

at first, each with an FC layer. Then, after being concatenated together, they are fed to

two more FC layers as done for our text model. Ultimately, we sketch the architecture in

figure 23. We refer to this model as social model.

We train both our models using 60% of the available dataset. We split the rest of the

tweets equally into a validation and a test set. The results obtained, in terms of F1 score,

are presented in table 2.

Our model with social features considerably outperforms (by 4.3%) our text model. More-

over, the improvement is visible in every single class.

Although pure performance is not the objective of our work, these results suggest that

social data contains useful features for detection. Interestingly, our text model performs

better on racist tweets than on sexist ones. We find this quite surprising since the sexism

class is almost twice as big. Our finding suggests that sexism is, at least in this case,

somewhat harder to detect in text. On the other hand, our social model has an impressive

improvement in sexist tweets (almost 13%), suggesting the presence of detectable patterns

in sexist users and their social interactions.

Evidently, our social model is superior to our text model in terms of performance. How-

ever, are social features interpretable? If yes, how? This will be the object of discussion

in the next section.
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4.2.2 Interpretation of Social Features via Shapley Values

In 4.1 and in chapter 3, we attributed relevance scores to words as part of a text. Now,

we face the challenge of also considering different kinds of input features, e.g. networks.

There is not one unique rule on how to interpret particular inputs and the interpretation

depends on the meaning that they carry. The following example shows the meaning

carried by our follower network (as a graph) w.r.t. the users’ relationships.

Example 11. Let v be a user that has a relationship (e.g. being friends or followers,

exchange messages, mention) with other users v1, v2, . . . , vd on a social media platform.

If we model the social environment with a graph (V,E), then (v, vi) ∈ E if user v and

vi are related, e.g. one of them follows the other one. When a detection model f uses

(V,E) as input, as does our social model, then edges can be modified to simulate a change

in the social situation. For example, the graph (V,E −{(v, vi)}) represents a hypothetical

scenario in which v and vi were not related.

In the same way as words in a text, single edges in our follower network can be considered

as other input features xt. Hence, as we will see in the following, we can explain their

effect with existing methods.

To estimate the contribution of an input feature xt, we implement a simple method to

approximate its corresponding Shapley value φt (Shapley, 1953), defined in 10. A similar

estimation technique is used in Štrumbelj and Kononenko (2014). The algorithm, shown

in the following, computes the Shapley values of the features of an input instance x.

Algorithm 1: Shapley Value Approximation

Result: Shapley value {φt}Mt=1 for every feature {xt}Mt=1

input p sample probability, x instance, f model, I number of iterations;

initialize φt = 0 ∀t;
for i = 1,. . . ,I do

for t = 1,. . . ,M do

sample a Bernoulli vector P = {0, 1}M with probability p;

pick S a subset of the features {xt}Mt=1 \ {xt} according to P ;

build xS alteration of x with only features in S;

φt ← φt
i−1
i

+
f(xS∪{xt})−f(xS)

i

end

end

The number of cycles I in the first for loop is arbitrary and only represents the number

of runs performed. The higher this value is, the more accurate the approximation of φt

will be. In our experiments, we found that I = 10 was already sufficient for convergence.
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As sample probability, we arbitrarily chose p = 0.7. Interestingly enough, if we set I = 1

and p = 1 we obtain a simple occlusion method like described in 3.3.

We can notice that the algorithm requires to run the target model f with a perturbed

input xS. For our social model’s first and second input sources, we can do this by removing

words from the corresponding BoW representation. For the third input, i.e. the follower

network, we alter the input as just described in example 11.

Note that in case graphs are not fed directly to the model as adjacency matrix and are

instead embedded, then there is no need to occlude edges as described in 11. For instance,

Mishra et al. (2018) embeds the follower network as dense vectors with node2vec (Grover

& Leskovec, 2016), one of the many available techniques for embedding graphs. In this

case, it would be sufficient to substitute the embedded nodes, i.e. numerical vectors, with

a baseline.

Figure 24 illustrates the explanations for two tweets fed to our text and social models.

For simplicity, we run the algorithm considering the user’s vocabulary and the follower

network as single features. As one can see, in 24c, the decision is strongly affected by

the user’s behaviour rather than by the tweet itself. Instead, in 24d, words still play the

biggest role in determining the outcome. In both cases, we notice how adding context

reduces the impact of the words that are the strongest contributors. For instance, in

24c, the contribution of the word “valenti” (largest contributor in 24a) shrinks by more

than 0.1. The same can be observed for the words with the biggest impact in the second

example (figures 24b and 24d).

By explaining several other instances, we observed that the graph component of our input,

i.e. the follower network, does not affect the decision as much as the user’s vocabulary.

Most likely, the cause is the graph’s high sparsity, due to the limited amount of available

data. We believe that future work, perhaps with the availability of a larger amount of

data, will also benefit from explaining the effect of single edges or a small group of them.

Besides explaining the prediction, here explainability also shows that social features play

a substantial role in the model’s decision. Hence, it proves their usefulness to a more

considerable extent than simply observing improved performance. Indeed, a higher F1

score could have been a result of the difference in the text and social models’ architectures.

However, thanks to explainability, we can be sure that using social features is the cause

of the improved detection capability shown by our social model.

We conclude that this type of feature is indeed useful. Yet, we do not really know why.

Can we also get a more in-depth understanding of why models benefit from having social

information? As we will see in the next section, explainability comes in again as a powerful

tool to tackle this question.
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Figure 24: Example of features contribution, computed via Shapley value approximation,

for our text and social models. In (a) and (c) we use as input the tweet “<user> I think

Arquette is a dummy who believes it. Not a Valenti who knowingly lies.”. The sexist tweet

refers to the actress Patricia Arquette, who spoke in favour of gender equality, and the

feminist writer Jessica Valenti. Some words are missing in the plot as our BoW dimension

is limited during preprocessing. In (b) and (d), we use the racist tweet “These girls are

the equivalent of the irritating Asian girls a couple of years ago. Well done, 7. #MKR”.

The hashtag refers to the Australian cooking show “My Kitchen Rules”.

4.2.3 A more in-depth Perspective: Latent Space Visualisation

In this section, we focus on understanding why social features are beneficial for detection

models. Unfortunately, Shapley values are not a viable option for this purpose as they only

quantify how much single features contribute to the outcome. Hence, we need to use an

explainability technique that explores the model more in-depth: latent space exploration.

As we will see in the following, this approach is inherently global, and we treat it as such

within this section. In the next section 4.2.4, we will convert this technique to be local,

i.e. on a single instance. At the same time, we will use it in combination with Shapley

values to provide more complete explanations.

Now, how do social features affect what models learn? We shall rephrase this question

to a more general one: what have our models learnt? To answer this, we can take a look
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Figure 25: Tweets, colored by label, in the latent space of our text model.

at our tweets in the latent feature space learnt by the detection models. For instance, we

consider our text model without the last FC operation. The tweets’ embedding in the

latent space can be obtained by feeding the tweets to this partial model and looking at

the corresponding 50-dimensional output. To visualise high dimensional data, we employ

a popular probabilistic technique, called t-Distributed Stochastic Neighbor Embedding (t-

SNE) (Maaten & Hinton, 2008), which assigns a 2-dimensional location to each sample

based on their similarity. A similar technique is used in Rizoiu et al. (2019) to understand

the effect of transfer learning on a model.

If we plot the resulting 2-dimensional map, shown in figure 25, we notice how all the tweets

are in one single cluster. The racist tweets, in green, can be found in a very dense group.

In contrast, the sexist ones, in orange, are more sparsely distributed and more hidden

among the non-abusive samples. The plot suggests once again a more subtle nature of

sexist language within this dataset. This is already the third indicator that we have, after

the lower annotators’ agreement and the poor text model’s F1 score on the sexism class.

For completeness, we specify that visualisations with t-SNE can look different (e.g. slightly

rotated) at each run of the algorithm. This can happen as t-SNE is not completely

deterministic. However, the overall shape of the latent space plot and the relationship

between the classes are not affected. For a concrete example, the reader can compare the

figures 25 and 28, obtained from the same model.

In light of the useful insights coming from this type of visualisation, we apply the same

technique to our social model. At first, we analyse the single input features’ hidden layers,

i.e. the hidden layers right before the concatenation stage. The results, shown in figure

26, show the behaviour of the model in the different branches (compare 23). The tweet

branch (figure 26a), not surprisingly, is very similar to the space learnt by our text model.
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Figure 26: Latent space visualisation of our social model, coloured by label. The fea-

tures are extracted from the single branches before the concatenation: tweet (a), user’s

vocabulary (b), follower network (c).

The user’s vocabulary branch (figure 26b) shows the samples distributed in well-separated

clusters. In particular, racist samples can all be found in a single and small group. The

follower network branch (figure 26c) is similar to the one for the user’s vocabulary, but

groups are not as well-separated. This suggests once more that the follower network does

not affect the decision as much as the user’s vocabulary.

Overall, we see again racism concentrating in a small area of the plot and, thus, well-

identified by the model. Sexism, on the other hand, appears in multiple clusters and is

overall more mixed with regular tweets. The result validates, to some extent, the notion

of homophily among racist users. In other words, racist users tend to cluster together or

have a similar behaviour (Mathew, Dutt, Goyal, & Mukherjee, 2019).

Intuitively, being able to divide users into different clusters based on their behaviour could

be helpful for classification at later layers. The higher performance of our social model

suggests the same thing, but this is still not enough to understand how user information
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Figure 27: Tweets, coloured by label, in the latent space of our social model.

is combined with the tweet processing. Hence, we look at the latent space before the

class scores of our social model. Here, the dimensionality has also been kept to 50 to

have a better comparison with our text model latent space plot. The visualisation, which

can be seen in figure 27, confirms our intuition. The tweets, which in our text model

appeared in a single cluster, are now in well-separated groups. We can find racist posts

almost exclusively in one single group. We also observe other pure or almost-pure clusters

(meant as containing only or almost-only tweets with the same label). Once again, sexist

tweets are more sparse and mixed with the other classes.

Qualitatively, we observe how the similarity metric learnt by the social model is substan-

tially different from the text model. By no means do we know for sure whether this metric

is intrinsically better or not. Nevertheless, it results in higher detection performance. As

an intriguing observation, the last visualisation (figure 27) is to some extent a combina-

tion between what the text model has learnt (figure 25) and the information that could

be extracted from the social data branches (figures 26b and 26c).

We have seen how social features can improve detection performance of hate speech by

providing context. We also believe that even more refined social features exist and will be

found in future research. Nonetheless, already the specific social features that we employed

have a profound impact as shown by the big leap in performance and the explanations.

In the previous section 4.2.2, contribution scores (i.e. Shapley values) provided valuable

information about how every input plays a role in the model’s prediction. Here, instead,

we explored the latent space learnt by a model and analysed the differences between our

text and social model. While Shapley values proved the usefulness of social features,

visualising the latent space explicitly illustrates why they are useful for a classifier.

So far, we studied and observed the behaviour of our models on a specific dataset. What
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happens when the model encounters a new tweet? In the next chapter, we show the

benefits of explaining detection models on an artificially crafted tweet. Furthermore, we

show how our visualisation techniques for exploring the latent space can be employed

locally and in combination with Shapley values explanations.

4.2.4 Practical Analysis Beyond the Dataset: Explaining a Novel Tweet

Often, we observe the behaviour of a model on a specific dataset: the one on which

the model trained. But in practice, for the model to be applicable, it should be able to

generalise far beyond the test set. For hate speech detection, this can be easily checked by

feeding the model a novel tweet, i.e. one made from scratch. This is possible as everybody

can quickly generate any kind of tweet. The same would not be possible, or at least not

easy, in another domain like computer vision.

What if we are interested in checking how our detection method reacts to specific sub-

types of hate? For instance, we want to check our model’s behaviour when fed with an

anti-Islamic tweet. To this end, we consider the racist sentence: “muslims are the worst,

together with their god”. We can feed it to our text model and look at the resulting

prediction. The sentence is classified as racist with a 75% confidence.

Furthermore, we can apply one of our explainability tools and check how single words

play a role in the decision (figure 28a). The word “muslims” is the major contributor to

this decision.

We can also inspect how this tweet compares to others already seen by our text model.

The comparison can be made by adapting one of the tools from the previous section. In

fact, we can convert our latent space analysis tool into a local explainability method by

using it to project a new instance onto the latent space. In other words, we can use the

method to plot where the new given tweet would be positioned in the space learnt by a

detection model. This approach can give a more precise idea of how the model perceives

the new tweet w.r.t. the dataset on which it has been trained. In figure 28c, we can

see how the islamophobic sentence has been embedded among the other racist tweets,

explaining how the model perceives it and thus confirming the original prediction.

If we now change the target of our racist tweet, how does the model act in response?

We compose the following hypothetical anti-black tweet: “black people are the worst,

together with their slang”. After feeding the fake tweet to our text model, we notice

considerably different prediction probabilities. The text, judged before as racist when

directed to Muslim people, is now judged with relatively high confidence as admissible

(73% confidence). When we look at the explanations for such an outcome, our technique

reveals that none of the words contributes significantly to the racism class. In particular,

the term “black” did not affect the prediction as much as the word “muslims” did earlier.

In the latent space, visualised in figure 28d, one can notice how the tweet location has

moved slightly away from the racism cluster. This indicates the different perception that
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Figure 28: Features contribution (Shapley values w.r.t. the racism class) and embedding

in the text model’s latent space of an islamophobic and a anti-black racist tweets. The

two sentences had, according to our text model, the 75% and 24% probability of being

racist respectively.

the model has of anti-black tweets.

Both the prediction and explanations via Shapley values and latent space projection

strongly suggest the presence of bias in our text model. On the one hand, the model

is biased against black people as it does not detect hate towards them. On the other

hand, the term “muslims” has a very strong negative impact, although it is by itself not

a negative word. This could result in judging too harshly content that contains the term

but is not overall harmful.

In general, one or two tweets are not enough to jump to conclusions. Surely, whether

a model has a bias or not has to be confirmed by examining more cases. Nevertheless,

these two techniques can be used complementary as useful indicators of potential biases.

Shapley values can identify non-hateful terms that regularly play a substantial role in the

outcome. In contrast, the latent space expresses the overall model’s perception of a tweet

w.r.t. to the dataset used for training. If changing the target of the hate changes the

prediction and the model’s perception, then the model/dataset might be biased against
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that target.

We can now run similar experiments with our social model. As we will see, the results

will expose the nature of the model and how it differs from the text one. To feed our

social model with the racist fake tweet, we also need to feed some author’s features. For a

fair comparison, we pick one random user with other racist tweets, one random user with

other sexist tweets and one random user with no hateful tweets in the dataset. We refer

to these users as racist, sexist and regular users respectively.

The islamophobic tweet is classified as racist when coming from a racist user (64%).

However, it is instead judged non-hateful in both the other cases (12% and 19% for a

sexist and user with no hate background respectively). Evidently, racist tweets also need

some contribution from the social features to be judged as racist. In other words, it seems

that racist tweets are predicted as such only if coming from racist users. But why is this

the case?

A very informative explanation comes again from both the Shapley values and latent

space exploration (figure 29). On the left side, we can see the Shapley value for each case,

i.e. for each type of user. All the words have a similar contribution to the racism class in

all cases. However, the difference in the authors plays a substantial role in the decision.

Only the racist user positively contributes to the racism class. On the right side of 29,

we can see the embedding in the latent space for each case. Three different input authors

cause the tweet to be embedded in three different clusters. Only in the first one the model

actually considers the possibility of the tweet being racist.

Hence, both explanation techniques confirm that racist tweets need to come from racist

authors to be recognised by our social model (or at least from a user in the same cluster).

Hence, we have found another strong indicator of model’s bias. Specifically, the model

relies too much on the overall behaviour of users and judges as admissible hateful tweet

when they come from a usually non-hateful source. In this sense, the model could favour

excessively people with an overall non-hateful content. Perhaps, our model believes that

racism comes almost exclusively from a small group of people that cluster together. This

bias might have been picked up from the data as all the racist tweets in Waseem and

Hovy (2016) were written by only nine users.

Ultimately, it becomes apparent how Shapley values and embedding in the latent space

convey different kinds of information. The first one quantifies how every single feature

plays a role, but does not really tell us what is happening in the background. The second

one illustrates the model’s perception of the tweet but does not provide any quantitative

information for the prediction. Furthermore, we have seen that artificially crafting and

modifying a tweet can be useful to examine the models’ behaviour in some particular

scenarios. In concrete examples, the two approaches worked as bias detectors both with

only text and with also social features.
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Figure 29: Features contribution (w.r.t. racism class) and embeddings of the islamophobic

tweet in the social model’s latent space. The three pairs of plots are w.r.t. to three

predictions done with different users as input: a racist one (a,b, 64%), a sexist one (c,d,

12%), and a regular one (e,f, 19%).
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4.2.5 Targeting the Right Audience

So far, we explored techniques that allow us to interpret the behaviour of a decision

model. Previously, in 2.1.3, we also discussed what makes a good explanation and de-

scribed several evaluation criteria. However, we have not discussed yet who is the target

of our explanations. In other words, we should ask ourselves: to whom is this model

interpretable? (Tomsett, Braines, Harborne, Preece, & Chakraborty, 2018).

Some works (Arrieta et al., 2020; Tomsett et al., 2018) already emphasise the importance

of the audience for explanations. They also discuss and define possible roles that a human

can have within the machine learning ecosystem. Each role, e.g. creators, data-subjects,

decision-subjects, has a different conception of the ML system. Hence, they also have

different expectations in terms of interpretability.

Embracing the concept of the audience’s importance, we need to identify who is the final

target of our explanations. For simplicity, we consider two major groups.

• Developer: we use this term to indicate anyone who is, at any stage, involved in the

model’s development. This includes all kinds of contributions, from early concept

design to deployment and maintenance.

• End User: anyone who interfaces the ML algorithm and might be affected by its

decisions.

Surely, in concrete cases, a more fine-grained categorisation can also be considered for

designing explanations. The following example puts the two groups into a hate speech

detection context.

Example 12. Let us suppose that a social media service provider develops a new inter-

pretable method for detecting hateful content among users on their platform. Anyone who

develops the model and works on its correct functioning is a developer. If the service

provider decides to apply some countermeasure on the content which is judged hateful,

then every user who interfaces the effects of the detector is an end-user. Of course, the

two types of target expect different explanations when interacting with the recognition al-

gorithm.

On the one hand, our first technique based on Shapley values attributes a contribution

score to every input component: words and social features. We believe that this approach

provides explanations suitable for end-users. The explanation is a list of reasons that is

reasonably short and easy to understand. At the same time, the end-user can also edit the

tweet and see how the model’s reaction changes. This makes the explanations contrastive

(see section 2.1.3) as the explanation’s target, i.e., the user, can compare two scenarios

with different decision outcomes (Lipton, 1990).

On the other hand, our second technique to explore the model’s latent space and project

a new tweet onto it seems more adapted to developers. We assume it is quite unlikely
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that an end-user has the knowledge to interpret a latent space plot. Also, in most cases,

only the developers have access to the detection model. Furthermore, combining the tool

with the possibility of feeding an original tweet allows the developers to test the correct

functioning in specific cases. For instance, our text model’s behaviour on a racist tweet

is a strong indicator of a model bias against black people that developers should identify

and address.

Regarding our social model, we see how projecting a novel tweet onto the latent space

can provide us with in-depth information on the model’s functioning. Developers should

be aware of the substantial importance that the model attributes to the user traits when

making a decision.

For a regular user of an online social platform potentially affected by the hate speech

recognition system, exploring the latent space is not an informative explanation. Among

the tools we built, we certainly would recommend a feature contribution approach more

as it is understandable and straightforward. To target people with more expertise, more

complex information such as our latent space exploration can be included.

In this section, for simplicity, we treated two possible potential types of audience. We have

also seen how our technique should adapt to meet their different level of expertise. In case

a more fine-grained type of audience can be identified, it becomes easier to successfully

meet the final user’s needs.

In conclusion, the design of explanations should take the target audience into account as

a priority. Explanations are especially informative when tailored to their intended final

user.
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5 Conclusion

Automatic detection of hate speech is urgently needed as online hateful behaviour con-

tinues to be a societal problem on a large scale. We have seen how detecting hate speech

is an extremely challenging task. One of the main causes is the variety of forms in which

hate appears: implicit or explicit, directed or generalised. Moreover, language subtleties

like sarcasm and figures of speech represent additional obstacles that current research has

to overcome.

Nonetheless, recent times have witnessed the proposal of a large variety of recognition

methods and a steady growth in detection performance. Several strategies can be found

in the existing literature, from lexicon-based algorithms to context-aware approaches. The

latter category addresses current limitations in performance by including social features

such as user traits and relationships.

ML technologies are widely used in recognition approaches. Indubitably, this is one of

the key factors to their success in terms of detection performance and generalisation

capabilities. However, they often behave as black-boxes which are not understandable to

humans.

Our work focuses on explainable artificial intelligence for online hateful content recognition

algorithms. In particular, as stated in 1, we pursued the following research objectives:

O1 Demonstrate the crucial role that interpretability can play in closing the gap between

current machine learning research and real-life applications.

O2 Identify the most relevant tools for explaining hate speech detectors without sacri-

ficing prediction performance.

O3 Explain the model’s prediction also when social network data is exploited to con-

struct more accurate models. Moreover, it should be clear how these features affect

the outcome and the behaviour of the model.

We identify the inclusion of interpretability for learning methods as fundamental for the

adoption of ML-based methods in real-life applications (O1). The reasons go from societal

acceptance and deployment of unbiased decision-makers to benefits for scientific research

and compliance with future legislation (O1). We decided to focus on post-hoc local

methods. That is, we explain single predictions of black-box models, regardless of their

complexity (O2).

We have examined existing methods for explaining text classifiers in-depth and analysed

their theoretical foundations. This allowed us to understand the strengths and weaknesses

of all methods and make a comparison between them (O2). As a result of our analysis,

we recommend the usage of the methods KernelSHAP for model-agnostic explanations

and DeepSHAP for explaining deep neural network predictions (O2). Furthermore, our

literature review suggests that a more general theory of explanations is likely to emerge

from future research.
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We worked towards making hate speech detection explainable. For this purpose, we

discussed and implemented various explainability techniques that provide crucial infor-

mation about detection models. We showed how DeepSHAP can expose the fallacies in

the Davidson benchmark construction (O1). In contrast to earlier analysis, we concluded

that the task design is a major cause of the models’ limited detection capabilities. More

specifically, the task design induces competition between classes — this is detrimental to

detection when two classes (such as offensive and hate) intersect. For future research,

we also suggest considering settings that eliminate the issue of class competition, e.g.

multi-label classification.

We have shown the importance of context in detecting hate speech. This was first sug-

gested by observing that a model with social features has an improved performance

(+4.3% F1 score) compared to one solely relying on text. The importance of context

was then confirmed by two explainability techniques: features contributions via Shapley

values and latent space exploration (O3). The former attests that social features play a

role in the model’s decision. The latter, instead, illustrates why models benefit from the

incorporation of social features, as they can better separate speech classes.

We have also seen how these techniques can be combined together and applied to an

artificially crafted tweet. This allows the user to examine the behaviour of the model in

specific circumstances. Our techniques were applied to concrete examples. As a result,

we were able to identify potential hidden biases in our models, both in the presence

and absence of social features (O3). Shapley values might expose non-hateful words that

consistently contribute positively or negatively to the hate class. Latent space exploration

can illustrate the different model’s perception of a tweet when changing the hate target

or the author.

Our approaches also face some limitations. For instance, we are not able to explain the

contribution of groups of words and entire sentences. We can quantify the role played by

single words via Shapley values, but we do not yet understand how these words actually

interact. Also, when explaining the effect of social context, we coarsely grouped social fea-

tures. With the availability of more data, future approaches could explain the role played

by more fine-grained social features, e.g. single relationships or small groups of them.

Addressing these limitations is undoubtedly a promising direction for future research to

close further the gap between machine learning research and real-life applications.

In real-life scenarios, besides accuracy, other requirements such as fairness and trust are

fundamental for detection models. In this sense, we see the potential in interpretability

to close the gap between accurate methods and methods that can be deployed in prac-

tice. Hence, we emphasise that future research should set interpretability as a priority

when designing new detection frameworks. As a good design practice, we also encour-

age to identify the target user of the model’s explainability. Explanations are especially

informative when tailored to their intended final user.
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